期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A CNN-SVR model for NO_(2)profile prediction based on MAX-DOAS observations:The influence of Chinese New Year overlapping the 2020 COVID-19 lockdown on vertical distributions of tropospheric NO_(2)in Nanjing,China
1
作者 Xin Tian Zijie Wang +7 位作者 Pinhua Xie Jin Xu Ang Li Yifeng Pan Feng Hu Zhaokun Hu Mingsheng Chen Jiangyi Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第7期151-165,共15页
In this study,a hybrid model,the convolutional neural network-support vector regression model,was adopted to achieve prediction of the NO_(2)profile in Nanjing from January 2019to March 2021.Given the sudden decline i... In this study,a hybrid model,the convolutional neural network-support vector regression model,was adopted to achieve prediction of the NO_(2)profile in Nanjing from January 2019to March 2021.Given the sudden decline in NO_(2)in February 2020,the contribution of the Coronavirus Disease-19(COVID-19)lockdown,Chinese New Year(CNY),and meteorologi cal conditions to the reduction of NO_(2)was evaluated.NO_(2)vertical column densities(VCDs) from January to March 2020 decreased by 59.05%and 32.81%,relative to the same period in 2019 and 2021,respectively.During the period of 2020 COVID-19,the average NO_(2)VCDs were 50.50%and 29.96%lower than those during the pre-lockdown and post-lockdown pe riods,respectively.The NO_(2)volume mixing ratios(VMRs)during the 2020 COVID-19 lock down significantly decreased below 400 m.The NO_(2)VMRs under the different wind fields were significantly lower during the lockdown period than during the pre-lockdown period This phenomenon could be attributed to the 2020 COVID-19 lockdown.The NO_(2)VMRs be fore and after the CNY were significantly lower in 2020 than in 2019 and 2021 in the same period,which further proves that the decrease in NO_(2)in February 2020 was attributed to the COVID-19 lockdown.Pollution source analysis of an NO_(2)pollution episode during the lockdown period showed that the polluted air mass in the Beijing-Tianjin-Hebei was trans ported southwards under the action of the north wind,and the subsequent unfavorable meteorological conditions(local wind speed of<2.0 m/sec)resulted in the accumulation o pollutants. 展开更多
关键词 MAX-DOAS cnn-svr Nitrogen dioxide COVID-19 Chinese New Year Regional transport
原文传递
基于CNN-SVR网络的黄渤海近岸海域叶绿素a浓度预测
2
作者 王晓霞 汪健平 +4 位作者 王佳莹 孙珊 苏博 姜会超 朱明明 《海洋预报》 CSCD 北大核心 2024年第4期77-87,共11页
利用海洋卫星观测数据和黄渤海近岸海域实测生态水质数据,建立了一种基于卷积神经网络结合支持向量回归(Convolutional Neural Network-Support Vector Regression,CNN-SVR)的深度学习网络模型的叶绿素a浓度预测方法。采用皮尔逊方法对... 利用海洋卫星观测数据和黄渤海近岸海域实测生态水质数据,建立了一种基于卷积神经网络结合支持向量回归(Convolutional Neural Network-Support Vector Regression,CNN-SVR)的深度学习网络模型的叶绿素a浓度预测方法。采用皮尔逊方法对叶绿素a与环境动力因子和生态水质因子作相关分析,发现营养盐因子大多与叶绿素a有显著相关性,水质因子如pH、溶解氧、盐度等与叶绿素a的相关性不大;将黄渤海近岸海域划分为渤海南部与黄海北部、黄海中部,进行春夏、秋冬两个时期1×1和2×2两种卷积核大小的CNN-SVR网络模型实验以及单因子敏感性分析试验。结果显示:卷积核大小为2×2时,CNN-SVR网络模型对训练数据的学习和对测试样本的预测检验效果都更优;渤海南部与黄海北部近岸海域模型预测效果更好。营养盐因子对模型预测能力的影响更显著,悬浮物等水质因子的影响相对较弱。单变量对模型预测的敏感性较弱,多变量整合具有互补性,改善了模型的预测效果。 展开更多
关键词 卷积神经网络结合支持向量回归模型 叶绿素a浓度预测 单因子敏感性分析 海洋卫星 海洋生态水质因子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部