Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China'...Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China's Mainland, mainly focusing on several hot issues, including instrumentations, magnetic field observations and research, solar flares, filaments and their eruptions, coronal mass ejections and related processes, as well as active regions and the corona, small-scale phenomena, solar activity and its predictions. A vision of the future is also described.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S Internatio...The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.展开更多
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament...We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.展开更多
Based on previous work, we investigate the propagation of CMEs in a more realistic plasma environment than the isothermal atmosphere, and find that it is a slightly faster reconnection for flux ropes to break free. Th...Based on previous work, we investigate the propagation of CMEs in a more realistic plasma environment than the isothermal atmosphere, and find that it is a slightly faster reconnection for flux ropes to break free. The average Alfven Mach number MA for the inflow into the reconnection site has to be at least 0.013 in order to give a plausible eruption (compared to MA = 0.005 for the isothermal atmosphere). Taking MA = 0.1, we find that the energy output and the electric field induced inside the current sheet match the temporal behavior inferred from the energetic, long duration, CME-associated X-ray events. The results indicate that catastrophic loss of equilibrium in the coronal magnetic field provides the most promising mechanism for major solar eruptions, and that the more energetic the eruption is, the earlier the associated flare peaks. The variation of the output power with the background field strength revealed by our calculations implies the poor correlation between slow CMEs and solar flares. This work also further confirms the explanation we proposed for the peculiar motion of giant X-ray arches and anomalous post-flare loops. Their kinematic pattern and observed heights are determined by the local Alfven speed and its variation with height.展开更多
Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive p...Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.展开更多
Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs t...Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.展开更多
With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity a...With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.展开更多
Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.S...Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.Several attempts have been taken to correct the projection effects,which however led to an inflated average velocity probably due to the biased choice of CME events.In order to estimate the overall influence of the projection effects on the kinematic properties of the CMEs,we perform a forward modeling of real distributions of CME properties,such as the velocity,the angular width,and the latitude,by requiring their projected distributions to best match observations.Such a matching is conducted by Monte Carlo simulations.According to the derived real distributions,we found that (1) the average real velocity of all non-full-halo CMEs is about 514 km s-1,and the average real angular width is about 33°,in contrast to the corresponding apparent values of 418 km s-1 and 42.7° in observations;(2) For the CMEs with the angular width in the range of 20°-120°,the average real velocity is 510 km s-1 and the average real angular width is 43.4°,in contrast to the corresponding apparent values of 392 km s-1 and 52° in observations.展开更多
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal fie...Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope. This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.展开更多
We present stereoscopic observations of six sequential eruptions of a filament in the active region NOAA 11045 on 2010 Feb 8, with the advantage of the STEREO twin viewpoints in combination with Earth's viewpoint fro...We present stereoscopic observations of six sequential eruptions of a filament in the active region NOAA 11045 on 2010 Feb 8, with the advantage of the STEREO twin viewpoints in combination with Earth's viewpoint from SOHO instruments and ground-based telescopes. The last one of the six eruptions is a coronal mass ejection, but the others are not. The flare in this successful one is more intense than in the others. Moreover, the velocity of filament material in the successful one is also the largest among them. Interestingly, all the filament velocities are found to be proportional to the power of their flares. We calculate magnetic field intensity at low altitude, the decay indexes of the external field above the filament, and the asymmetry properties of the overlying fields before and after the failed eruptions and find little difference between them, indicating the same coronal confinement exists for both the failed and successful eruptions. The results suggest that, besides the confinement of the coronal magnetic field, the energy released in the low corona should be another crucial element affecting a failed or successful filament eruption. That is, a coronal mass ejection can only be launched if the energy released exceeds some critical value, given the same initial coronal conditions.展开更多
In this paper,we report two MC events observed by WIND spacecraft with good examples of fieldaligned residual flow inside the MC structure. For both events,the co-moving frames are determined through the deHoffman-Tel...In this paper,we report two MC events observed by WIND spacecraft with good examples of fieldaligned residual flow inside the MC structure. For both events,the co-moving frames are determined through the deHoffman-Teller (HT) analysis and the axial orientations are inferred by the newly developed minimal residue (MR) method. The nature coordinate system for both events are constructed with velocity of the HT frame and the inferred MC axis,the field and flow remaining in the HT frame are analyzed at this coordinate system. As a result,we find that the residual flows in the co-moving HT frame of the two MC events are almost anti-parallel to the helical magnetic field. We speculate that the field-aligned residual flows are large scale coherent hydrodynamic vortices co-moving with the MCs at the supersonic speed near 1 AU. Data analyses show that the event in slow ambient solar wind is expanding at 1 AU and another one in fast solar wind does not show apparent expansion. Proton behaviors for both events are quasi-isothermal. Accelerated HT analysis shows that both events have no suitable HT frame with constant accelerations,which suggests that both events may be moving at the constant speed near 1 AU under the assumptions of the HT analysis. For both events,the ratio of the dynamic pressure to the magnetic pressure is larger than that of the thermal pressure to magnetic pressure,which suggests that the dynamic effects due to the plasma flows remaining in the co-moving HT frame are more important than the thermal effects in the study of MC evolution and propagation.展开更多
According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, th...According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.展开更多
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 Jul...We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km^-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.展开更多
To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, ...To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.展开更多
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 10878002, 10610099, 10933003 and 10673004)the National Basic Research Program of China (973 program, 2011CB811402)
文摘Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China's Mainland, mainly focusing on several hot issues, including instrumentations, magnetic field observations and research, solar flares, filaments and their eruptions, coronal mass ejections and related processes, as well as active regions and the corona, small-scale phenomena, solar activity and its predictions. A vision of the future is also described.
文摘The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.
基金Supported by the National Natural Science Foundation of China.
文摘We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.
基金This work was supported by NASA grants NAG5-11420 to the Smithsonian Astrophysical Observatory.
文摘Based on previous work, we investigate the propagation of CMEs in a more realistic plasma environment than the isothermal atmosphere, and find that it is a slightly faster reconnection for flux ropes to break free. The average Alfven Mach number MA for the inflow into the reconnection site has to be at least 0.013 in order to give a plausible eruption (compared to MA = 0.005 for the isothermal atmosphere). Taking MA = 0.1, we find that the energy output and the electric field induced inside the current sheet match the temporal behavior inferred from the energetic, long duration, CME-associated X-ray events. The results indicate that catastrophic loss of equilibrium in the coronal magnetic field provides the most promising mechanism for major solar eruptions, and that the more energetic the eruption is, the earlier the associated flare peaks. The variation of the output power with the background field strength revealed by our calculations implies the poor correlation between slow CMEs and solar flares. This work also further confirms the explanation we proposed for the peculiar motion of giant X-ray arches and anomalous post-flare loops. Their kinematic pattern and observed heights are determined by the local Alfven speed and its variation with height.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB806302)the National Natural Science Foundation of China(Grant Nos. 10933003 and 10403003)
文摘Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.
基金Supported by the National Natural Science Foundation of Chinasupported by the Chinese foundations (GYHY200706013, 2006CB806302)+1 种基金the National Natural Science Foundation of China (Grant Nos. 10403003, 10933003 and 10673004)SOHO is a project of international cooperation between ESA and NASA
文摘Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40890161,11025315,10921303 and 11003026)the CAS Project KJCX2-YW-T04+1 种基金the National Basic Research Programof China (Grant 2011CB811403)the Young Researcher Grant of the National Astronomical Observatories,Chinese Academy of Sciences
文摘With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.
基金supported by the National Basic Research Program of China(No.2011CB811402)the National Natural Science Foundation of China (Grant Nos.11025314,10403003,10933003 and 10673004)
文摘Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.Several attempts have been taken to correct the projection effects,which however led to an inflated average velocity probably due to the biased choice of CME events.In order to estimate the overall influence of the projection effects on the kinematic properties of the CMEs,we perform a forward modeling of real distributions of CME properties,such as the velocity,the angular width,and the latitude,by requiring their projected distributions to best match observations.Such a matching is conducted by Monte Carlo simulations.According to the derived real distributions,we found that (1) the average real velocity of all non-full-halo CMEs is about 514 km s-1,and the average real angular width is about 33°,in contrast to the corresponding apparent values of 418 km s-1 and 42.7° in observations;(2) For the CMEs with the angular width in the range of 20°-120°,the average real velocity is 510 km s-1 and the average real angular width is 43.4°,in contrast to the corresponding apparent values of 392 km s-1 and 52° in observations.
基金Supported by the National Natural Science Foundation of China
文摘Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope. This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.
基金supported by the Chinese foundations MOST (2011CB811400)the National Natural Science Foundation of China (Grant Nos. 10933003,11078004 and 11073050)
文摘We present stereoscopic observations of six sequential eruptions of a filament in the active region NOAA 11045 on 2010 Feb 8, with the advantage of the STEREO twin viewpoints in combination with Earth's viewpoint from SOHO instruments and ground-based telescopes. The last one of the six eruptions is a coronal mass ejection, but the others are not. The flare in this successful one is more intense than in the others. Moreover, the velocity of filament material in the successful one is also the largest among them. Interestingly, all the filament velocities are found to be proportional to the power of their flares. We calculate magnetic field intensity at low altitude, the decay indexes of the external field above the filament, and the asymmetry properties of the overlying fields before and after the failed eruptions and find little difference between them, indicating the same coronal confinement exists for both the failed and successful eruptions. The results suggest that, besides the confinement of the coronal magnetic field, the energy released in the low corona should be another crucial element affecting a failed or successful filament eruption. That is, a coronal mass ejection can only be launched if the energy released exceeds some critical value, given the same initial coronal conditions.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40621003, 40804046, 40536029, 40674084 and 40523006)the National Basic Re-search Program of China ("973" Project) (Grant No. 4902006CB806304)+1 种基金the Spe-cialized Research Fund for State Key Laboratoriesthe Open Research Program of the State Key Laboratory of Space Weather, Chinese Academy of Sciences
文摘In this paper,we report two MC events observed by WIND spacecraft with good examples of fieldaligned residual flow inside the MC structure. For both events,the co-moving frames are determined through the deHoffman-Teller (HT) analysis and the axial orientations are inferred by the newly developed minimal residue (MR) method. The nature coordinate system for both events are constructed with velocity of the HT frame and the inferred MC axis,the field and flow remaining in the HT frame are analyzed at this coordinate system. As a result,we find that the residual flows in the co-moving HT frame of the two MC events are almost anti-parallel to the helical magnetic field. We speculate that the field-aligned residual flows are large scale coherent hydrodynamic vortices co-moving with the MCs at the supersonic speed near 1 AU. Data analyses show that the event in slow ambient solar wind is expanding at 1 AU and another one in fast solar wind does not show apparent expansion. Proton behaviors for both events are quasi-isothermal. Accelerated HT analysis shows that both events have no suitable HT frame with constant accelerations,which suggests that both events may be moving at the constant speed near 1 AU under the assumptions of the HT analysis. For both events,the ratio of the dynamic pressure to the magnetic pressure is larger than that of the thermal pressure to magnetic pressure,which suggests that the dynamic effects due to the plasma flows remaining in the co-moving HT frame are more important than the thermal effects in the study of MC evolution and propagation.
基金funded by the National Natural Science Foundation of China(Grant Nos.41674166,41074132,41274193 and 41304144)the National Standard Research Program(Grant 200710123)
文摘According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.
基金Supported by the National Natural Science Foundation of China.
文摘We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km^-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.
基金jointly funded by the National Basic Research Program of China (973 Program, Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grants 41074132, 41274193, 41474166, 41304144, 11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.