期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
改进YOLOv5s的无人机目标检测算法 被引量:17
1
作者 宋谱怡 陈红 苟浩波 《计算机工程与应用》 CSCD 北大核心 2023年第1期108-116,共9页
无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模... 无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模块引入到YOLOv5s算法中,提高网络的特征提取能力;引入双锥台特征融合(bifrustum feature fusion,BFF)结构,提高算法对较小目标的检测检测精度;将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高定位精度。实验结果表明,改进后的YOLOv5s取得了86.3%的平均均值精度(mAP),比原算法YOLOv5s提高了16.8个百分点,在复杂背景下仍能显著提升无人机图像目标检测性能。 展开更多
关键词 无人机检测 YOLOv5s 压缩激励模块 ciou loss
下载PDF
基于YOLOv5的遥感图像目标检测 被引量:12
2
作者 董丽君 曾志高 +2 位作者 易胜秋 文志强 孟辰 《湖南工业大学学报》 2022年第3期44-50,共7页
为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干... 为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干网络提取到的特征层进行特征融合得到最优特征层,再对定位损失进行优化,采用CIoU loss作为定位损失函数,Focal loss作为分类损失函数;最后,在测试时对输入图片采用自适应图片缩放,以减少信息冗余,加快模型检测速率。该模型能有效捕捉图像特征,实现快速精准的目标定位。对公开10类地理空间物体检测数据集(NWPU-VHR 10)和RSOD数据集进行了训练测试,对比试验表明,优化模型mAP达到0.9896,比优化前的模型mAP提升了2.31%,与使用相同数据集的其他模型的最优值进行比较,其mAP提升了8.19%,该方法能有效提高遥感图像检测精度。 展开更多
关键词 遥感图像检测 YOLOv5算法 ciou loss Focal loss 马赛克数据增强 自适应方法
下载PDF
复杂背景下的手势识别 被引量:12
3
作者 王银 陈云龙 孙前来 《中国图象图形学报》 CSCD 北大核心 2021年第4期815-827,共13页
目的手势识别是人机交互领域的热点问题。针对传统手势识别方法在复杂背景下识别率低,以及现有基于深度学习的手势识别方法检测时间长等问题,提出了一种基于改进TinyYOLOv3算法的手势识别方法。方法对TinyYOLOv3主干网络重新进行设计,... 目的手势识别是人机交互领域的热点问题。针对传统手势识别方法在复杂背景下识别率低,以及现有基于深度学习的手势识别方法检测时间长等问题,提出了一种基于改进TinyYOLOv3算法的手势识别方法。方法对TinyYOLOv3主干网络重新进行设计,增加网络层数,从而确保网络提取到更丰富的语义信息。使用深度可分离卷积代替传统卷积,并对不同网络层的特征进行融合,在保证识别准确率的同时,减小网络模型的大小。采用CIoU(complete intersection over union)损失对原始的边界框坐标预测损失进行改进,将通道注意力模块融合到特征提取网络中,提高了定位精度和识别准确率。使用数据增强方法避免训练过拟合,并通过超参数优化和先验框聚类等方法加快网络收敛速度。结果改进后的网络识别准确率达到99.1%,网络模型大小为27.6 MB,相比原网络(TinyYOLOv3)准确率提升了8.5%,网络模型降低了5.6 MB,相比于YOLO(you only look once)v3和SSD(single shot multibox detector)300算法,准确率略有降低,但网络模型分别减小到原来的1/8和1/3左右,相比于YOLO-lite和MobileNet-SSD等轻量级网络,准确率分别提升61.12%和3.11%。同时在自制的复杂背景下的手势数据集对改进后的网络模型进行验证,准确率达到97.3%,充分证明了本文算法的可行性。结论本文提出的改进TinyYOLOv3手势识别方法,对于复杂背景下的手势具有较高的识别准确率,同时在检测速度和模型大小方面都优于其他算法,可以较好地满足在嵌入式设备中的使用要求。 展开更多
关键词 手势识别 TinyYOLOv3 深度可分离卷积 ciou损失
原文传递
基于改进YOLOv3算法的车辆目标检测 被引量:10
4
作者 霍爱清 杨玉艳 谢国坤 《计算机工程与设计》 北大核心 2022年第7期1981-1989,共9页
为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,... 为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,减少模型参数量和计算量;引入CIOU回归优化损失函数,量化预测框与真实框中心点距离、重叠面积、尺度以及长宽比等评测指标,解决均方误差(MSE)损失优化方向不一致的问题,使目标框回归更加稳定。实验结果表明,该算法参数量为19.56 M,比YOLOv3算法降低了近67%,同时平均精度均值(mAP)提高了3.68%,每秒帧数(FPS)提高了8帧,为车辆目标检测提供了容易部署在移动端的轻量级网络。 展开更多
关键词 车辆检测 深度学习 YOLOv3算法 深度可分离卷积 ciou损失
下载PDF
密集交通场景中改进YOLOv3目标检测优化算法 被引量:4
5
作者 霍爱清 张书涵 +2 位作者 杨玉艳 胥静蓉 王泽文 《计算机工程与科学》 CSCD 北大核心 2023年第5期878-884,共7页
针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以... 针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以提高对密集目标的特征提取能力,减少网络模型参数量;采用完整交并比CIoU损失函数加快网络模型收敛速度,同时将多目标集合预测思想与DIoU-NMS有机结合,提出了SD-NMS优化算法,以降低漏检误检率。在BDD100K数据集上进行实验,结果表明,改进的目标检测算法召回率达到91.58%,精准率达到93.04%,与YOLOv3算法相比,召回率和精准率分别提升了12.09%和9.52%,具有更好的检测效果。 展开更多
关键词 目标检测 深度学习 YOLOv3算法 ciou损失 非极大值抑制
下载PDF
一种改进YOLOv3的学校场所目标识别方法 被引量:1
6
作者 高锦风 陈玉 +2 位作者 魏永明 李剑南 江若楠 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2023年第4期531-539,共9页
基于遥感影像进行特定场所类型的识别在智慧城市规划、土地利用分析、平安城市建设等多方面都具有重要意义。然而,不同场所的环境景观属性(如道路和停车场等)比较复杂,难以用传统的分类或目标识别方法基于简单的规则进行识别。卷积神经... 基于遥感影像进行特定场所类型的识别在智慧城市规划、土地利用分析、平安城市建设等多方面都具有重要意义。然而,不同场所的环境景观属性(如道路和停车场等)比较复杂,难以用传统的分类或目标识别方法基于简单的规则进行识别。卷积神经网络具有较强的空间信息挖掘能力,尝试对著名的YOLOv3模型进行改进,提出一种名为YOLO-S-CIoU的新模型,用于学校场所目标的识别。主要改进工作包括:1)使用SRXnet模块替换YOLOv3中的Darknet53模块以提高特征学习能力;2)利用complete-IoU loss(CIoU loss)优化边界框的回归;3)基于自制的学校场所样本数据集(SS数据集)进行训练和验证。实验结果表明,YOLO-S-CIoU的平均精度(AP)达到96.46%;参数量为226 MB。与改进前YOLOv3相比,YOLO-S-CIoU实现了参数量9 MB的下降以及AP 2.3%的提升。此外,在新疆图木舒克市和烟台市区域遥感影像中对学校场所目标识别,召回率比YOLOv3分别提高37.5%和42.2%。这表明改进后的网络模型在不同地理区域的遥感影像识别中具有更强的鲁棒性和更高的识别能力。 展开更多
关键词 YOLO-S-ciou SE-ResNeXt ciou loss 特定场所识别 遥感 学校识别
下载PDF
改进CenterNet的小目标安全帽检测算法 被引量:3
7
作者 赵江河 王海瑞 +2 位作者 朱贵富 吴蕾 谢思远 《陕西理工大学学报(自然科学版)》 2023年第3期40-47,共8页
为实现对施工现场工人戴安全帽的有效检测,提升检测的精度和质量,提出了一种基于中心点网络(CenterNet)的安全帽检测方法。针对被检测目标大部分为小目标的情况,删除ResNet-50的最后一层卷积层;针对CenterNet对安全帽定位不准确的问题,... 为实现对施工现场工人戴安全帽的有效检测,提升检测的精度和质量,提出了一种基于中心点网络(CenterNet)的安全帽检测方法。针对被检测目标大部分为小目标的情况,删除ResNet-50的最后一层卷积层;针对CenterNet对安全帽定位不准确的问题,使用CIoU损失函数替换了原有的损失函数;针对CenterNet对推理过程特征图信息利用不充分的问题,采用残差连接将主干网络得到的两个特征网络分别与上采样的特征图进行融合的方法;针对通道卷积没有融合不同感受野的问题,使用金字塔卷积核(PyConv)对特征图进行感受野和通道之间融合的方法。结果表明,在自制的安全帽数据集上,mAP共提升了6.5%,改进后的CenterNet方法能明显提升安全帽检测的精确度。 展开更多
关键词 中心点网络 ciou损失 残差连接 小目标检测 金字塔卷积核
下载PDF
基于YOLOX-αSMV的带钢材料表面缺陷检测算法
8
作者 曹义亲 刘文才 徐露 《华东交通大学学报》 2024年第2期109-117,共9页
【目的】针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法。【方法】首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度。其... 【目的】针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法。【方法】首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度。其次,在Neck部分加入多维度特征融合模块MDFFM,将通道、空间、位置信息融入特征向量中,加强算法的特征提取能力。最后,引入Varifocal Loss和α-CIoU加权正负样本,提高预测框的回归精度。【结果】实验结果表明,YOLOX-αSMV在NEU-DET数据集中的mAP@0.5:0.95达到了47.54%,较YOLOX算法提高了3.43%。【结论】算法在保持检测速度基本不变的情况下,对模糊缺陷和小目标缺陷的识别、定位能力明显提升。 展开更多
关键词 YOLOX 缺陷检测 α-ciou 坐标注意力 Varifocal loss SoftPool
下载PDF
改进YOLO v4模型在鱼类目标检测上的应用研究 被引量:5
9
作者 郑宗生 李云飞 +2 位作者 卢鹏 邹国良 王振华 《渔业现代化》 CSCD 2022年第1期82-88,96,共8页
鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函... 鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函数基础上构建了新的损失项,改进的损失函数使真实框与相交框呈相同宽高比进行回归,同时通过设置多锚点框模式,增强在特定尺寸面积上的检测效果。结果显示:改进YOLO v4模型的mAP(mean Average Precision)比原模型有较大提升,在自建数据集、Fish4Knowledge数据集和NCFM数据集上的mAP分别达到了94.22%、99.52%、92.16%。研究表明,改进YOLO v4模型可以快速准确地检测到鱼的位置和类别,检测速度满足实时的要求,可以为渔业精准养殖等提供参考。 展开更多
关键词 鱼类目标检测 ciou损失 损失函数 YOLO v4模型
下载PDF
基于YOLOv3的轻量化高精度多目标检测模型 被引量:6
10
作者 陈晓艳 任玉蒙 +3 位作者 张东洋 洪耿 许能华 闫潇宁 《天津科技大学学报》 CAS 2021年第3期33-38,共6页
针对当前目标检测模型在边缘设备中的应用占用内存过大、无法达到实时性要求的问题,提出一种基于YOLOv3的轻量化多目标检测模型.采用MobileNet网络进行点卷积和深度可分离卷积运算提取图像特征,显著降低了模型的参数量.同时,为了保证目... 针对当前目标检测模型在边缘设备中的应用占用内存过大、无法达到实时性要求的问题,提出一种基于YOLOv3的轻量化多目标检测模型.采用MobileNet网络进行点卷积和深度可分离卷积运算提取图像特征,显著降低了模型的参数量.同时,为了保证目标检测精度,在训练过程中不仅采用CIOU(completeintersectionoverunion)目标框回归损失函数,而且在损失函数中引入Focal loss,减少正负样本分布不平衡所造成的误差;引入Label Smoothing调整真实样本标签类别在计算损失函数时的权重,有效抑制过拟合问题.经3.5万个实际场景数据训练,本文提出的改进模型在行人和车辆的检测精度上分别达到47.3%和69.67%,模型大小仅为YOLOv3的40%,实现了理想检测精度水平下的模型轻量化. 展开更多
关键词 多目标检测 轻量化模型 YOLOv3 ciou Focal loss
下载PDF
基于改进轻量化YOLOX的无人机航拍目标检测算法
11
作者 胡潇 潘申富 《计算机测量与控制》 2024年第1期57-63,共7页
针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络... 针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络,降低了模型参数量和计算量,提高目标检测实时性;其次为了弥补轻量化带来的检测精度下降,考虑检测目标框的长宽比引入CIOU定位损失函数,提升目标定位的精度;同时为了平衡训练过程中的正负难易样本,引入Focal Loss置信度损失函数提升模型的检测性能;基于VisDrone2019-DET数据集实验表明,改进后算法模型参数量降低了56.2%,计算量降低了52.5%,在检测精度没有明显下降情况下单张图片推理时间减少了41.4%;最后,将改进后的算法部署到Nvidia Jetson Xavier NX机载端,测得模型检测帧率可达22 FPS,改进后算法满足巡逻任务的应用需求。 展开更多
关键词 无人机 目标检测 轻量化 YOLOX Focal loss ciou
下载PDF
基于Transformer改进的Faster RCNN在复杂环境下的车辆检测
12
作者 王鑫泽 何超 《机电工程技术》 2024年第4期106-110,共5页
在监控视角中目标车辆较小、遮挡较为严重,导致检测精度低。通过探讨卷积神经网络和Transformer模型的互相借鉴和联系,并结合损失函数等常规改进,提出了新的Faster RCNN模型。通过借鉴Transformer模型的思想,对原有的特征提取网络进行... 在监控视角中目标车辆较小、遮挡较为严重,导致检测精度低。通过探讨卷积神经网络和Transformer模型的互相借鉴和联系,并结合损失函数等常规改进,提出了新的Faster RCNN模型。通过借鉴Transformer模型的思想,对原有的特征提取网络进行了改进,将原block比例3∶4∶6∶3改为3∶3∶27∶3、卷积核由3×3改为7×7,增大其感受野,能够更好捕捉图像中的全局特征,使用DW卷积来减少参数量并略微提高性能,使用Channel shuffle解决通道间信息不交流的问题。将原先交并比IoU改为CIoU,与改进后的特征提取网络结合,进一步提高小目标和遮挡目标的检测效果。在UA-DETRAC数据集上,改进后的模型在mAP@0.5:0.95方面比原算法提高了20.20%,并在大、中、小目标下分别提高了15.8%、23%和45.8%,相较于其他模型,如YO⁃LOv7、YOLOv5和Cascade RCNN,mAP@0.5:0.95分别提高了3.3%、5%和6.69%。 展开更多
关键词 TRANSFORMER ciou损失函数 卷积神经网络改进 改进的Faster RCNN
下载PDF
基于注意力机制的实时车辆点云检测算法 被引量:5
13
作者 赖坤城 赵津 +2 位作者 刘畅 刘子豪 王玺乔 《激光与红外》 CAS CSCD 北大核心 2021年第3期285-291,共7页
针对现有激光点云目标检测效果、实时性差的问题,提出了一种基于注意力机制的实时车辆点云检测算法。本文所提出的检测算法将注意力机制算法与YOLOv3相结合,利用注意力机制对点云鸟瞰图的特征进行权重分配,以学习不同通道和空间下特征... 针对现有激光点云目标检测效果、实时性差的问题,提出了一种基于注意力机制的实时车辆点云检测算法。本文所提出的检测算法将注意力机制算法与YOLOv3相结合,利用注意力机制对点云鸟瞰图的特征进行权重分配,以学习不同通道和空间下特征的相关性,并通过CIOU loss和Focal loss来改进检测器的损失函数。实验结果表明基于注意力机制的车辆点云检测算法检测速度可达30帧/秒,车辆目标的平均检测精度达到了92.5%。并且在实车数据测试中,该算法能快速准确的对一定范围内车辆进行准确识别,并且达到实时检测效果。 展开更多
关键词 车辆检测 注意力机制 YOLOv3 ciou loss
下载PDF
基于EfficientNet的实时目标检测模型 被引量:1
14
作者 赵昀杰 张太红 姚芷馨 《计算机应用与软件》 北大核心 2023年第8期255-264,297,共11页
在智能驾驶领域中,通常要求模型兼顾精度和推演速率。然而由于硬件条件的限制,目前大量的目标检测模型尚不能满足该要求。因此,基于单阶段目标检测算法提出一种准确率与推演速率相对平衡的实时目标检测模型。该模型使用EfficientNet-B1... 在智能驾驶领域中,通常要求模型兼顾精度和推演速率。然而由于硬件条件的限制,目前大量的目标检测模型尚不能满足该要求。因此,基于单阶段目标检测算法提出一种准确率与推演速率相对平衡的实时目标检测模型。该模型使用EfficientNet-B1作为主干网络,SPP与改进后的PANet作为脖颈网络,CIoU损失函数与YOLO损失函数的组合作为模型训练时的损失函数。为了在不引入额外计算量的同时进一步提升模型的精度,在模型训练时引入多种模型训练技巧。实验结果证明,在BDD100K与PASCAL VOC数据集上,该模型相比YOLOv4模型有着更低的计算量和更好的检测精度,且实验中所使用的训练技巧均为模型带来了一定的精度提升,证明了该模型及训练技巧的有效性。 展开更多
关键词 目标检测 EfficientNet ciou损失函数 训练技巧
下载PDF
基于改进Faster R-CNN的新能源电池炸点缺陷检测分析 被引量:1
15
作者 韩光 杨晟伟 +1 位作者 袁培森 朱勐 《自动化与仪器仪表》 2023年第7期113-117,共5页
在新能源电池的生产过程中,常常会因为焊缝工艺问题而造成电池炸点缺陷问题,传统的炸点检测主要依靠人工观察,效率低下且精度不高。为了提高新能源电池在焊缝过程中炸点缺陷的检测精度,针对原始带有炸点的电池横截面图像少的问题,首先... 在新能源电池的生产过程中,常常会因为焊缝工艺问题而造成电池炸点缺陷问题,传统的炸点检测主要依靠人工观察,效率低下且精度不高。为了提高新能源电池在焊缝过程中炸点缺陷的检测精度,针对原始带有炸点的电池横截面图像少的问题,首先对原始数据集中的图像进行炸点标注,并使用一系列图像变换、图像拼接等方法进行数据扩充,然后在原始Faster R-CNN目标检测模型的基础上,将ResNet101作为特征提取网络,使用CIoU损失策略计算RPN和预测框的定位损失,引入特征金字塔FPN结构,使得小目标炸点的上下文信息更加丰富,在残差块中加入CBAM注意力模块,让模型更加关注图像中的炸点部位,以进一步增强小目标炸点的检测性能。在真实数据集上的测试结果表明,改进后得到的Faster R-CNN目标检测模型适用于新能源电池炸点的检测,得到的最高AP为75.126%,相比较于Faster R-CNN模型提升了9.52%,并且模型对不同尺度的炸点的定位更加准确,模型的推理和检测速度也没有明显的下降,为电池炸点缺陷检测提供了有效的算法。 展开更多
关键词 缺陷检测 Faster R-CNN FPN CBAM注意力机制 ciou损失
原文传递
基于双模型的输电线绝缘子自爆检测算法 被引量:3
16
作者 林航 耿多飞 +2 位作者 于浩 胡丹 张可 《计算机与现代化》 2022年第7期15-20,共6页
针对输电线路无人机巡检图像中绝缘子自爆缺陷目标小而难以精准检测的问题,提出一种基于Faster R-CNN和改进的YOLO v3级联双模型的绝缘子自爆缺陷检测算法。首先,利用无人机巡检图像构建绝缘子串缺陷数据集,并对训练图像样本进行翻转预... 针对输电线路无人机巡检图像中绝缘子自爆缺陷目标小而难以精准检测的问题,提出一种基于Faster R-CNN和改进的YOLO v3级联双模型的绝缘子自爆缺陷检测算法。首先,利用无人机巡检图像构建绝缘子串缺陷数据集,并对训练图像样本进行翻转预处理,增加样本数量,提高模型泛化能力,避免过拟合;然后,利用Faster R-CNN检测图像中的绝缘子串,再将检测到的绝缘子串图像送入改进的YOLO v3网络进行自爆缺陷的定位。改进的YOLO v3网络是在YOLO v3基础上借鉴FPN的思想,增加特征提取层并进行特征融合,充分利用深层特征和浅层特征;同时采用CIoU Loss函数作为损失函数,以解决边界框宽高比尺度信息。实验结果表明,本文算法在所构建的绝缘子缺陷数据集上的检测准确率达到91.2%,相比Faster R-CNN或YOLO v3等单模型检测算法提升了3.31个百分点以上,能有效实现无人机巡检中绝缘子自爆缺陷的检测,为输电线路智能化巡检故障诊断提供方法支持。 展开更多
关键词 绝缘子自爆 目标检测 Faster R-CNN YOLO v3 ciou loss
下载PDF
基于Efficientnet的红外目标检测算法
17
作者 侯艳丽 王娟 《电子测量技术》 北大核心 2023年第16期64-72,共9页
针对复杂场景下红外目标检测存在准确率低、召回率低的问题,为了提高红外图像中的小目标以及被遮挡目标的检测识别能力,提出基于Efficientnet的红外目标检测算法。首先,将高效轻量的Efficientnet作为模型的特征提取主干网,降低模型的参... 针对复杂场景下红外目标检测存在准确率低、召回率低的问题,为了提高红外图像中的小目标以及被遮挡目标的检测识别能力,提出基于Efficientnet的红外目标检测算法。首先,将高效轻量的Efficientnet作为模型的特征提取主干网,降低模型的参数量,提升训练速度。在Efficientnet主干网的最后一个输出层引入SPP模块,丰富特征图的表达能力,进行多尺度融合,扩大特征图的感受野;在模型特征融合部分,使用FPN特征金字塔网络,特征融合后增加CSPNet模块和ECA注意力机制,加强特征提取。检测部分使用YOLO Head,对目标进行分类和回归,并用CIoU Loss作为边界框回归损失函数,提高对被遮挡目标的识别能力。实验结果表明,基于Efficientnet的模型大小仅为YOLOv3的18.8%,并且在FLIR数据集上mAP达到80.74%,相比于YOLOv3算法提高10.12%,该模型在减少模型参数量的同时,提升了检测精度。该模型在FLIR数据集上具有良好的泛化能力,提高了对小目标和遮挡目标的检测能力。 展开更多
关键词 红外目标检测 Efficientnet ECA注意力机制 SPP ciou loss
下载PDF
基于改进的YOLOv5人脸口罩识别算法 被引量:1
18
作者 王珂 赵慧 +1 位作者 张成 魏子涵 《信息化研究》 2022年第6期38-45,共8页
针对于现有口罩检测算法效率低,需降低算法参数量以及模型大小这一问题,文中对YOLOv5算法模型使用压缩策略,并融合CBAM卷积注意力模块,优化网络空间减少参数计算避免过拟合,增强密集小尺度目标特征表达能力;通过使用隐层剪枝法和卷积核... 针对于现有口罩检测算法效率低,需降低算法参数量以及模型大小这一问题,文中对YOLOv5算法模型使用压缩策略,并融合CBAM卷积注意力模块,优化网络空间减少参数计算避免过拟合,增强密集小尺度目标特征表达能力;通过使用隐层剪枝法和卷积核剪枝法来调整YOLOv5网络大小削减冗余结构,选取CIoU目标损失函数来提升模型感知力,优化模型识别效果和运行速度。实验结果表明,改进后的YOLOv5人脸口罩识别算法较原始算法的平均准确度mAP值提高5%,筛选出训练的最优模型,充分地验证了该算法的科学性、有效性和实用性。 展开更多
关键词 卷积块注意力模块 YOLOv5 压缩策略 ciou 损失函数 MAP
下载PDF
一种改进YOLOv5s的多尺度目标检测算法 被引量:5
19
作者 茆震 任玉蒙 +2 位作者 陈晓艳 任克营 赵昱炜 《传感技术学报》 CAS CSCD 北大核心 2023年第2期267-274,共8页
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提... 针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。 展开更多
关键词 深度学习 YOLOv5s 多尺度目标检测 CBAM注意力机制 ciou损失函数
下载PDF
基于轻量级卷积神经网络的手势识别检测 被引量:7
20
作者 牛雅睿 武一 +2 位作者 孙昆 卢昊 赵普 《电子测量技术》 北大核心 2022年第4期91-98,共8页
针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加... 针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加权双向特征金字塔网络改进特征融合网络,提升网络检测精度;最后使用CIoU损失函数作为边界框回归损失函数并加入Mosaic数据增强技术,加快模型收敛速度提升网络的鲁棒性。实验结果表明,改进后的模型大小仅为17.9MB,较原YOLOv3模型大小减小了92.4%,平均精确度提高了0.6%。因此新的检测方法在减少模型参数量的同时,还可保证模型的检测精度和效率,为手势识别检测提供理论参考。 展开更多
关键词 手势识别 轻量级网络 YOLOv3 Ghost模块 加权双向特征金字塔 ciou损失函数
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部