Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, ...Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, copper indium gallium selenide (CIGS)-based ultra-thin solar cell (SC) configuration (Ag/ZnO/ZnSe/CIGS/Si/Ni) has been designed and examined using SCAPS-1D. The numerical calculations revealed that this new design resulted in a substantial improvement in SC performance. This study explores the utilization of two absorber layers, CIGS and Si, both with a total of 2 μm thickness, to enhance device performance while reducing material costs, observing an increase in key SC parameters as the Si absorber layer thickness is increased, reaching a maximum efficiency of 29.13% when CIGS and Si thicknesses are set at 0.4 μm and 1.6 μm, respectively with doping absorber doping density of 10<sup>14</sup> cm<sup>-3</sup>. Furthermore, we analyze the impact of variation in absorber and buffer layer thickness, as well as doping concentration, surface recombination velocity (SRV), electron affinity, series-shunt resistance, and temperature, on optimized CIGS SC parameters such as short-circuit current density (J<sub>SC</sub>), open circuit voltage (V<sub>OC</sub>), fill factor (FF), and power conversion efficiency (PCE). The findings yielded by the investigation offer significant elucidation regarding the fabrication of economically viable and highly efficient non-hazardous CIGS ultra-thin SC.展开更多
文摘Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, copper indium gallium selenide (CIGS)-based ultra-thin solar cell (SC) configuration (Ag/ZnO/ZnSe/CIGS/Si/Ni) has been designed and examined using SCAPS-1D. The numerical calculations revealed that this new design resulted in a substantial improvement in SC performance. This study explores the utilization of two absorber layers, CIGS and Si, both with a total of 2 μm thickness, to enhance device performance while reducing material costs, observing an increase in key SC parameters as the Si absorber layer thickness is increased, reaching a maximum efficiency of 29.13% when CIGS and Si thicknesses are set at 0.4 μm and 1.6 μm, respectively with doping absorber doping density of 10<sup>14</sup> cm<sup>-3</sup>. Furthermore, we analyze the impact of variation in absorber and buffer layer thickness, as well as doping concentration, surface recombination velocity (SRV), electron affinity, series-shunt resistance, and temperature, on optimized CIGS SC parameters such as short-circuit current density (J<sub>SC</sub>), open circuit voltage (V<sub>OC</sub>), fill factor (FF), and power conversion efficiency (PCE). The findings yielded by the investigation offer significant elucidation regarding the fabrication of economically viable and highly efficient non-hazardous CIGS ultra-thin SC.