A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experime...A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.展开更多
基金Supported by the National Social Development Research Program of China (No.2004DE100625).
文摘A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.