期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度卷积限制玻尔兹曼机的步态识别
被引量:
5
1
作者
周兰
于重重
+1 位作者
陈秀新
王鑫
《计算机工程与设计》
北大核心
2018年第1期244-248,共5页
传统的步态识别方法难以得到有效的步态特征,而深度学习方法可以通过学习自动获得特征,然而现有的深度学习模型用于步态识别时存在一些问题。深度卷积神经网络训练速度快,但训练精度较低;深度置信网络模型精度较高,但模型收敛速度较慢...
传统的步态识别方法难以得到有效的步态特征,而深度学习方法可以通过学习自动获得特征,然而现有的深度学习模型用于步态识别时存在一些问题。深度卷积神经网络训练速度快,但训练精度较低;深度置信网络模型精度较高,但模型收敛速度较慢。针对这两种模型的特点,提出一种两者平衡的算法模型,即深度卷积限制玻尔兹曼机。将卷积神经网络中权值共享、提取图像局部特征等方面的优势融入深度玻尔兹曼机模型中,提高训练精度,减少参数数量。所提算法在CASIA步态数据库上的实验结果验证了该算法在步态识别问题上的有效性和可行性。
展开更多
关键词
步态识别
深度卷积限制玻尔兹曼机
深度卷积神经网络
限制玻尔兹曼机
casia
步态数据库
下载PDF
职称材料
题名
基于深度卷积限制玻尔兹曼机的步态识别
被引量:
5
1
作者
周兰
于重重
陈秀新
王鑫
机构
北京工商大学计算机与信息工程学院
出处
《计算机工程与设计》
北大核心
2018年第1期244-248,共5页
基金
北京自然科学基金重点基金项目B类(KZ201410011014)
教育部人文社会科学研究规划基金项目(16YJAZH072)
文摘
传统的步态识别方法难以得到有效的步态特征,而深度学习方法可以通过学习自动获得特征,然而现有的深度学习模型用于步态识别时存在一些问题。深度卷积神经网络训练速度快,但训练精度较低;深度置信网络模型精度较高,但模型收敛速度较慢。针对这两种模型的特点,提出一种两者平衡的算法模型,即深度卷积限制玻尔兹曼机。将卷积神经网络中权值共享、提取图像局部特征等方面的优势融入深度玻尔兹曼机模型中,提高训练精度,减少参数数量。所提算法在CASIA步态数据库上的实验结果验证了该算法在步态识别问题上的有效性和可行性。
关键词
步态识别
深度卷积限制玻尔兹曼机
深度卷积神经网络
限制玻尔兹曼机
casia
步态数据库
Keywords
gait
recognition
deep
convolutional
restricted
Boltzman
machine
deep
convolutional
neural
networks
restricted
Boltzmann
machine
casia
gait
database
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度卷积限制玻尔兹曼机的步态识别
周兰
于重重
陈秀新
王鑫
《计算机工程与设计》
北大核心
2018
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部