Equilibrium geometries of 16 possible isomers for C74(BN)2 were studied by INDO series of methods, to indicate that the most stable three geometries are those where boron and nitrogen atoms substitute carbon atoms l...Equilibrium geometries of 16 possible isomers for C74(BN)2 were studied by INDO series of methods, to indicate that the most stable three geometries are those where boron and nitrogen atoms substitute carbon atoms located at the same hexagon near the longest axis of C78 (C2v) to form B-N-B-N unit. Electronic spectra of C74(BN)2 were investigated with INDO/CIS method. The reason for the red shift of UV absorptions for C74(BN)2 compared with those of C78 (C2v) was discussed. IR spectra for 9,8,28,29-C74(BN)2 and 28,29,30,31-C74(BN)2 were calculated on the basis of AM1 geometries.展开更多
文摘Equilibrium geometries of 16 possible isomers for C74(BN)2 were studied by INDO series of methods, to indicate that the most stable three geometries are those where boron and nitrogen atoms substitute carbon atoms located at the same hexagon near the longest axis of C78 (C2v) to form B-N-B-N unit. Electronic spectra of C74(BN)2 were investigated with INDO/CIS method. The reason for the red shift of UV absorptions for C74(BN)2 compared with those of C78 (C2v) was discussed. IR spectra for 9,8,28,29-C74(BN)2 and 28,29,30,31-C74(BN)2 were calculated on the basis of AM1 geometries.