This article describes the transient models of the neutronics code VITAS that are used for solving time-dependent,pinresolved neutron transport equations.VITAS uses the stiffness confinement method(SCM)for temporal di...This article describes the transient models of the neutronics code VITAS that are used for solving time-dependent,pinresolved neutron transport equations.VITAS uses the stiffness confinement method(SCM)for temporal discretization to transform the transient equation into the corresponding transient eigenvalue problem(TEVP).To solve the pin-resolved TEVP,VITAS uses a heterogeneous variational nodal method(VNM).The spatial flux is approximated at each Cartesian node using finite elements in the x-y plane and orthogonal polynomials along the z-axis.Angular discretization utilizes the even-parity integral approach at the nodes and spherical harmonic expansions at the interfaces.To further lower the computational cost,a predictor–corrector quasi-static SCM(PCQ-SCM)was developed.Within the VNM framework,computational models for the adjoint neutron flux and kinetic parameters are presented.The direct-SCM and PCQ-SCM were implemented in VITAS and verified using the two-dimensional(2D)and three-dimensional(3D)exercises on the OECD/NEA C5G7-TD benchmark.In the 2D and 3D problems,the discrepancy between the direct-SCM solver’s results and those reported by MPACT and PANDAS-MOC was under 0.97%and 1.57%,respectively.In addition,numerical studies comparing the PCQ-SCM solver to the direct-SCM solver demonstrated that the PCQ-SCM enabled substantially larger time steps,thereby reducing the computational cost 100-fold,without compromising numerical accuracy.展开更多
SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 co...SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 12175138, U20B2011)the Young Talent Project of the China National Nuclear Corporation
文摘This article describes the transient models of the neutronics code VITAS that are used for solving time-dependent,pinresolved neutron transport equations.VITAS uses the stiffness confinement method(SCM)for temporal discretization to transform the transient equation into the corresponding transient eigenvalue problem(TEVP).To solve the pin-resolved TEVP,VITAS uses a heterogeneous variational nodal method(VNM).The spatial flux is approximated at each Cartesian node using finite elements in the x-y plane and orthogonal polynomials along the z-axis.Angular discretization utilizes the even-parity integral approach at the nodes and spherical harmonic expansions at the interfaces.To further lower the computational cost,a predictor–corrector quasi-static SCM(PCQ-SCM)was developed.Within the VNM framework,computational models for the adjoint neutron flux and kinetic parameters are presented.The direct-SCM and PCQ-SCM were implemented in VITAS and verified using the two-dimensional(2D)and three-dimensional(3D)exercises on the OECD/NEA C5G7-TD benchmark.In the 2D and 3D problems,the discrepancy between the direct-SCM solver’s results and those reported by MPACT and PANDAS-MOC was under 0.97%and 1.57%,respectively.In addition,numerical studies comparing the PCQ-SCM solver to the direct-SCM solver demonstrated that the PCQ-SCM enabled substantially larger time steps,thereby reducing the computational cost 100-fold,without compromising numerical accuracy.
文摘SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.