期刊文献+
共找到471篇文章
< 1 2 24 >
每页显示 20 50 100
Recognition and localization system of the robot for harvesting Hangzhou White Chrysanthemums 被引量:6
1
作者 Qinghua Yang Chun Chang +2 位作者 Guanjun Bao Jun Fan Yi Xun 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第1期88-95,共8页
To realize the robotic harvesting of Hangzhou White Chrysanthemums,the quick recognition and 3D vision localization system for target Chrysanthemums was investigated in this study.The system was comprised of three mai... To realize the robotic harvesting of Hangzhou White Chrysanthemums,the quick recognition and 3D vision localization system for target Chrysanthemums was investigated in this study.The system was comprised of three main stages.Firstly,an end-effector and a simple freedom manipulator with three degrees were designed to meet the quality requirements of harvesting Hangzhou White Chrysanthemums.Secondly,a segmentation based on HSV color space was performed.A fast Fuzzy C-means(FCM)algorithm based on S component was proposed to extract the target image from irrelevant background.Thirdly,binocular stereo vision was used to acquire the target spatial information.According to the shape of Hangzhou White Chrysanthemums,the centroids of stamens were selected as feature points to match in the right and left images.The experimental results showed that the proposed method was able to recognize Hangzhou White Chrysanthemums with the accuracy of 85%.When the distance between target and baseline was 150-450 mm,the errors between the calculated and measured distance were less than 14 mm,which could meet the requirements of the localization accuracy of the harvesting robot. 展开更多
关键词 Hangzhou White chrysanthemums harvesting robot REcOGNITION LOcALIZATION Fuzzy c-means(fcm) binocular vision stereo matching
原文传递
Improved evidential fuzzy c-means method 被引量:4
2
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(fcm) magnetic resonance imaging(MRI) image segmentation
下载PDF
Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning
3
作者 Jili Chen Hailan Wang Xiaolan Xie 《Computer Systems Science & Engineering》 2024年第3期645-663,共19页
Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ... Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data. 展开更多
关键词 Fuzzy c-means(fcm) cluster center density canopy ISOMAP clustering
下载PDF
A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy
4
作者 Kusum Yadav Yasser Alharbi +6 位作者 Eissa Jaber Alreshidi Abdulrahman Alreshidi Anuj Kumar Jain Anurag Jain Kamal Kumar Sachin Sharma Brij BGupta 《Computers, Materials & Continua》 SCIE EI 2024年第11期2665-2683,共19页
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis... In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging. 展开更多
关键词 Image processing biological data PSO Fuzzy c-means(fcm)
下载PDF
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
5
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 Fuzzy c-means(fcm) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
下载PDF
Research and Implementation of the Enterprise Evaluation Based on a Fusion Clustering Model of AHP-FCM 被引量:2
6
作者 侯彩虹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期147-151,共5页
Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering w... Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering with fuzzy C-means( FCM)clustering will be advanced. In the method, the initial cluster number and cluster center can be obtained using subtractive clustering. On this basis,clustering result will be further optimized with FCM. In addition,the data dimension will be reduced through the analytic hierarchy process( AHP) before clustering calculating.In order to verify the effectiveness of fusion algorithm,an example about enterprise credit evaluation will be carried out. The results show that the fusion clustering algorithm is suitable for classifying high-dimension data,and the algorithm also does well in running up processing speed and improving visibility of result. So the method is suitable to promote the use. 展开更多
关键词 fuzzy c-means(fcm) analytic hierarchy process(AHP) cluster analysis enterprise credit evaluation
下载PDF
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
7
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(fcm) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
A model to determining the remaining useful life of rotating equipment,based on a new approach to determining state of degradation 被引量:3
8
作者 Saeed RAMEZANI Alireza MOINI +1 位作者 Mohamad RIAHI Adolfo Crespo MARQUEZ 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2291-2310,共20页
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th... Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used. 展开更多
关键词 remaining useful life(RUL) prognostics and health management(PHM) autoregressive markov regime switching(ARMRS) health index(HI) Dempster-Shafer theory fuzzy c-means(fcm) Kurtosis-entropy DEGRADATION
下载PDF
Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering 被引量:2
9
作者 LI Dan NIU Zhongbin PENG Dongxu 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第5期663-670,共8页
In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is... In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is small, or the image is affected by uneven illumination. In view of these questions, this paper puts forward a new clustering segmentation algorithm based on texture feature. This algorithm uses Gabor function spectra to represent magnetic tile surface texture and then uses a user-defined local product coefficient to modify Gabor energy spectra to get the center number of fuzzy C-means(FCM) clustering. Moreover, the user-defined Gabor energy spectra image is segmented by clustering algorithm. Finally, it extracts the magnetic tile surface defects according to the changes of regional gray characteristics. Experiments show that the algorithm effectively overcomes the noise interference and makes a good performance on accuracy and robustness, which can effectively detect crack,damage, pit and other defects on the magnetic tile surface. 展开更多
关键词 defect detection of magnetic tile Gabor functions local characteristics of gray scale fuzzy c-means(fcm) clustering
原文传递
半监督聚类的若干新进展 被引量:50
10
作者 李昆仑 曹铮 +2 位作者 曹丽苹 张超 刘明 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期735-742,共8页
半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法的一些新进展,包括基于约束的方法、基于距离的方法和基于距离与约束的融合方法.然后提出一种基于约束的... 半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法的一些新进展,包括基于约束的方法、基于距离的方法和基于距离与约束的融合方法.然后提出一种基于约束的半监督模糊C-means聚类算法.实验表明,该算法与传统的模糊C-means及半监督K-means方法相比,具有更好的聚类精度. 展开更多
关键词 半监督聚类 模糊c一均值(fcm) 标记数据 无标记数据
原文传递
应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究 被引量:44
11
作者 杨琳 朱阿兴 +5 位作者 李宝林 秦承志 裴韬 刘宝元 李润奎 蔡强国 《土壤学报》 CAS CSCD 北大核心 2007年第5期784-791,共8页
在没有土壤普查专家及土壤图的地区,获取土壤环境间关系的知识是基于知识进行预测性土壤制图中的关键问题。本文建立了一套应用模糊c均值聚类(Fuzzyc-means,FCM)获取土壤环境间关系知识的方法:得到对土壤形成发展具有重要作用的环境因子... 在没有土壤普查专家及土壤图的地区,获取土壤环境间关系的知识是基于知识进行预测性土壤制图中的关键问题。本文建立了一套应用模糊c均值聚类(Fuzzyc-means,FCM)获取土壤环境间关系知识的方法:得到对土壤形成发展具有重要作用的环境因子,建立环境因子数据库;对环境因子进行模糊聚类,得到环境因子组合隶属度分布图;根据隶属度值确定野外采样点;将环境因子组合与土壤类型对应,进而提取土壤-环境关系知识。为检验该方法的有效性,应用所得知识进行土壤制图,通过独立采样点对土壤图进行精度评价。本文在黑龙江鹤山农场一个研究区的应用结果表明,该方法仅需要少量的野外采样即可获得有效的土壤-环境关系知识,为预测性土壤制图提供必需的依据,同时也显著提高了野外采样的效率。 展开更多
关键词 预测性土壤制图 土壤-环境关系知识 模糊c均值聚类方法(fcm) 环境因子组合 土壤-环境推理模型(SoLIM)
下载PDF
改进的模糊C-均值聚类算法研究 被引量:41
12
作者 齐淼 张化祥 《计算机工程与应用》 CSCD 北大核心 2009年第20期133-135,共3页
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作... 为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 展开更多
关键词 模糊c-均值 权值 聚类
下载PDF
模糊C均值算法的聚类有效性评价 被引量:45
13
作者 朴尚哲 超木日力格 于剑 《模式识别与人工智能》 EI CSCD 北大核心 2015年第5期452-461,共10页
模糊C均值(FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响.文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析... 模糊C均值(FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响.文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析.实验结果表明基于类内紧致度和类间离散度比值的聚类有效性指数对数据维度及噪声较为鲁棒,基于隶属度的聚类有效性指数不适于高维数据等,上述结果可帮助研究人员在不同的应用环境下选择合适的模糊聚类有效性函数. 展开更多
关键词 聚类算法 有效性指数 模糊c均值(fcm)
下载PDF
基于遗传算法和模糊C均值聚类的WSN分簇路由算法 被引量:41
14
作者 董发志 丁洪伟 +2 位作者 杨志军 熊成彪 张颖婕 《计算机应用》 CSCD 北大核心 2019年第8期2359-2365,共7页
针对无线传感器网络(WSN)的节点能量有限、生命周期短、吞吐量低等问题,提出一种基于遗传算法(GA)和模糊C均值(FCM)聚类的WSN分簇路由算法GAFCMCR,采取“集中分簇,分布簇头选举”的方式。网络初始化时基站采用由GA优化的FCM聚类算法形... 针对无线传感器网络(WSN)的节点能量有限、生命周期短、吞吐量低等问题,提出一种基于遗传算法(GA)和模糊C均值(FCM)聚类的WSN分簇路由算法GAFCMCR,采取“集中分簇,分布簇头选举”的方式。网络初始化时基站采用由GA优化的FCM聚类算法形成网络分簇。第一轮簇头由距簇中心最近的节点担任;从第二轮开始,簇头的选举由上一轮的簇头负责,选举过程综合考虑候选节点的剩余能量、与基站的距离、与簇内其他节点的平均距离三个因子,并根据网络状态实时调整三个因子的权重。在数据传输阶段,将轮询机制引入簇内通信。仿真结果表明,相同网络环境下,与LEACH算法和基于K-Means的均匀分簇路由(KUCR)算法相比,GAFCMCR将网络生命周期延长了105%和20%。GAFCMCR成簇效果良好,具有良好的能量均衡性和更高的吞吐量。 展开更多
关键词 无线传感器网络 模糊c均值聚类 遗传算法 均匀分簇 轮询机制
下载PDF
采用自组织RBF网络算法的变压器故障诊断 被引量:37
15
作者 付强 陈特放 朱佼佼 《高电压技术》 EI CAS CSCD 北大核心 2012年第6期1368-1375,共8页
针对以往神经网络常采用试凑法设计网络节点的缺陷,提出了一种自组织径向基函数(RBF)神经网络算法。该算法首先通过模糊C-均值(FCM)算法得到初始的RBF神经网络节点数和中心向量,再利用经Gaussian随机分布改进的粒子群优化(PSO)算法对初... 针对以往神经网络常采用试凑法设计网络节点的缺陷,提出了一种自组织径向基函数(RBF)神经网络算法。该算法首先通过模糊C-均值(FCM)算法得到初始的RBF神经网络节点数和中心向量,再利用经Gaussian随机分布改进的粒子群优化(PSO)算法对初始RBF神经网络节点数、中心向量、节点连接权值进行优化。利用鸢尾属数据集及葡萄酒数据集对提出的自组织RBF神经网络算法进行了仿真测试,证明该算法对于提高分类精度和优化RBF神经网络结构有一定的作用。最后,将该算法应用到电力机车牵引变压器综合测试及故障诊断系统中,结果证明所提的自组织RBF神经网络诊断算法可有效监测出原系统试验时误报和漏报的故障。 展开更多
关键词 变压器 自组织径向基函数(RBF)神经网络 Gaussian分布粒子群优化(PSO)算法 模糊c-均值(fcm)算法 故障诊断 溶解气体分析(DGA)
下载PDF
局部放电脉冲波形特征提取及分类技术 被引量:35
16
作者 鲍永胜 《中国电机工程学报》 EI CSCD 北大核心 2013年第28期168-175,25,共8页
根据电力设备周围存在多种干扰以及绝缘存在多局放的工况,提出基于单一缺陷的局部放电在线监测与识别方法,并指出实现此系统的关键技术之一是脉冲群快速分类技术,其由脉冲波形特征提取和聚类分析算法组成。针对108次/s的超宽带局部放电... 根据电力设备周围存在多种干扰以及绝缘存在多局放的工况,提出基于单一缺陷的局部放电在线监测与识别方法,并指出实现此系统的关键技术之一是脉冲群快速分类技术,其由脉冲波形特征提取和聚类分析算法组成。针对108次/s的超宽带局部放电脉冲波形–时间序列,重点研究脉冲波形特征提取及分类技术。在分析等效时频算法和模糊C均值聚类算法的基础上,对其做了进一步的改进。基于气体绝缘开关设备(gas insulated switchgear,GIS)的局部放电试验结果表明:采用改进后的算法可以使计算机准确的完成对局放脉冲的的自动分类,并通过在聚类中引入阀值滤除了各子类脉冲中相似性较低的脉冲。这为研制多局放源的在线监及模式系统提供了试验和理论依据。 展开更多
关键词 局部放电 在线监测 特征提取 分类 多局放源 等效时频 模糊c均值
下载PDF
改进的灰狼优化算法及其高维函数和FCM优化 被引量:30
17
作者 张新明 王霞 康强 《控制与决策》 EI CSCD 北大核心 2019年第10期2073-2084,共12页
灰狼优化算法(GWO)具有较强的局部搜索能力和较快的收敛速度,但在解决高维和复杂的优化问题时存在全局搜索能力不足的问题.对此,提出一种改进的GWO,即新型反向学习和差分变异的GWO(ODGWO).首先,提出一种最优最差反向学习策略和一种动态... 灰狼优化算法(GWO)具有较强的局部搜索能力和较快的收敛速度,但在解决高维和复杂的优化问题时存在全局搜索能力不足的问题.对此,提出一种改进的GWO,即新型反向学习和差分变异的GWO(ODGWO).首先,提出一种最优最差反向学习策略和一种动态随机差分变异算子,并将它们融入GWO中,以便增强全局搜索能力;然后,为了很好地平衡探索与开采能力以提升整体的优化性能,对算法前、后半搜索阶段分别采用单维操作和全维操作形成ODGWO;最后,将ODGWO用于高维函数和模糊C均值(FCM)聚类优化.实验结果表明,在许多高维Benchmark函数(30维、50维和1 000维)优化上, ODGWO的搜索能力大幅度领先于GWO,与state-of-the-art优化算法相比, ODGWO具有更好的优化性能.在7个标准数据集的FCM聚类优化上,与GWO、GWOepd和LGWO相比, ODGWO表现出了更好的聚类优化性能,可应用在更多的实际优化问题上. 展开更多
关键词 智能优化算法 灰狼优化算法 反向学习 差分变异 模糊c均值(fcm)聚类 高维函数优化
原文传递
采用深度学习和多维模糊C均值聚类的负荷分类方法 被引量:30
18
作者 石亮缘 周任军 +3 位作者 张武军 余虎 李彬 王珑 《电力系统及其自动化学报》 CSCD 北大核心 2019年第7期43-50,共8页
为了对日趋海量的负荷数据进行有效地分类处理,提出一种采用深度学习和多维模糊C均值聚类的负荷分类方法。采用深度学习中的卷积自编码器CAEs堆叠形成深度卷积自编码网络,通过训练实现对输入的典型日负荷曲线集进行特征分层提取和降维... 为了对日趋海量的负荷数据进行有效地分类处理,提出一种采用深度学习和多维模糊C均值聚类的负荷分类方法。采用深度学习中的卷积自编码器CAEs堆叠形成深度卷积自编码网络,通过训练实现对输入的典型日负荷曲线集进行特征分层提取和降维处理。计及低维特征序列的数值维度和趋势维度,将数值序列的欧氏距离与趋势序列的改进动态时间弯曲距离相结合为多维相似性距离,作为新的相似性指标,提出一种多维模糊C均值聚类算法,用以对特征序列进行聚类分析。算例分析结果表明,所提出的方法在数据特征提取降维、负荷分类有效性、稳定性及聚类效率等方面具有较大优势,可为需求侧管理项目选择、电价制定、负荷管理优化等提供有效参考。 展开更多
关键词 深度学习 卷积自编码器 多维特征 模糊c均值聚类 负荷分类
下载PDF
基于模糊C均值聚类和随机森林的短时交通状态预测方法 被引量:30
19
作者 陈忠辉 凌献尧 +2 位作者 冯心欣 郑海峰 徐艺文 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1879-1886,共8页
交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首... 交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首先,利用一种新颖的融合时空信息的自适应多核支持向量机(AMSVM)来预测短时交通流参数,包括流量、速度和占有率。其次,基于FCM算法分析历史交通流,获取历史交通状态信息。最后,利用随机森林算法分析所预测的短时交通流参数,得到最终预测的短时交通状态。该方法在融合时空信息的同时采用随机森林算法应用于短时交通状态预测这一全新的研究领域。实验结果表明,FCM对历史交通状态的评估方式适用于不同的高速路和城市道路场景。其次,随机森林比其它常见的机器学习方法具有更高的预测精度,从而提供实时可靠的短时交通出行信息。 展开更多
关键词 短时交通状态预测 随机森林 模糊c均值聚类 自适应多核支持向量机
下载PDF
基于减法聚类与模糊c-均值的模糊聚类的研究 被引量:22
20
作者 肖春景 张敏 《计算机工程》 CAS CSCD 北大核心 2005年第B07期135-137,共3页
模糊c-均值算法在进行模糊聚类的时候对初始值非常的敏感,初始值设置得不好,就会陷入局部最优解。该文在使用模糊c-均值之前利用减法聚类对其设置初始值,不但能够获得最优解,还能加快收敛速度,并且自动获得最佳的聚类个数。
关键词 减法聚类 模糊c-均值 密度
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部