A mobile C-band dual polarimetric weather radar J type (PCDJ), which adopts simultaneous transmission and simultaneous reception (STSR) of horizontally and vertically polarized signals, was first developed in Chin...A mobile C-band dual polarimetric weather radar J type (PCDJ), which adopts simultaneous transmission and simultaneous reception (STSR) of horizontally and vertically polarized signals, was first developed in China in 2008. It was deployed in the radar observation plan in the South China Heavy Rainfall Experiment (SCHeREX) in the summer of 2008 and 2009, as well as in Tropical Western Pacific Ocean Observation Experiments and Research on the Predictability of High Impact Weather Events from 2008 to 2010 in China (TWPOR). Using the observation data collected in these experiments, the radar systematic error and its sources were analyzed in depth. Meanwhile an algorithm that can smooth differential propagation phase (~Dp) for estimating the high-resolution specific differential phase (KDP) was developed. After attenuation correction of reflectivity in horizontal polarization (ZH) and differential reflectivity (ZDR) of PCDJ radar by means of KDP, the data quality was improved significantly. Using quality-controlled radar data, quantitative rainfall estimation was performed, and the resutls were compared with rain-gauge measurements. A synthetic ZH /KDp-based method was analyzed. The results the traditional ZH-based method when the rain suggest that the synthetic method has the advantage over rate is 〉5 mm h^-1. The more intensive the rain rates, the higher accuracy of the estimation.展开更多
基于微波多层板技术,通过对单片微波集成电路(MMIC)、微机电系统(MEMS)和低温共烧陶瓷(LTCC)滤波器等微组装工艺的优化和分析,使多通道接收前端进一步实现小型化设计和应用。同时,对电路和结构进行改进,使前端组件具有更好的幅相一致性...基于微波多层板技术,通过对单片微波集成电路(MMIC)、微机电系统(MEMS)和低温共烧陶瓷(LTCC)滤波器等微组装工艺的优化和分析,使多通道接收前端进一步实现小型化设计和应用。同时,对电路和结构进行改进,使前端组件具有更好的幅相一致性和高隔离度。最终实现的C频段四通道接收前端尺寸为120 mm×50 mm×12 mm,幅相一致性分别小于±0.8 d B和±5°,通道间隔离度高于60 d Bc。该设计方法的实现为小型化多通道接收前端的工程化应用提供了一种有效的解决方案。展开更多
基金funded by National Natural Science Foundation of China (Grant Nos. 40975013 and 40975014)Chinese Academy of Meteorological Sciences (CAMS) basic scientific and operational project:Observation and retrieval methods of microphysics and dynamic parameters of cloud and precipitation with multi-wavelength Remote Sensing,SCHeREX and TWPOR
文摘A mobile C-band dual polarimetric weather radar J type (PCDJ), which adopts simultaneous transmission and simultaneous reception (STSR) of horizontally and vertically polarized signals, was first developed in China in 2008. It was deployed in the radar observation plan in the South China Heavy Rainfall Experiment (SCHeREX) in the summer of 2008 and 2009, as well as in Tropical Western Pacific Ocean Observation Experiments and Research on the Predictability of High Impact Weather Events from 2008 to 2010 in China (TWPOR). Using the observation data collected in these experiments, the radar systematic error and its sources were analyzed in depth. Meanwhile an algorithm that can smooth differential propagation phase (~Dp) for estimating the high-resolution specific differential phase (KDP) was developed. After attenuation correction of reflectivity in horizontal polarization (ZH) and differential reflectivity (ZDR) of PCDJ radar by means of KDP, the data quality was improved significantly. Using quality-controlled radar data, quantitative rainfall estimation was performed, and the resutls were compared with rain-gauge measurements. A synthetic ZH /KDp-based method was analyzed. The results the traditional ZH-based method when the rain suggest that the synthetic method has the advantage over rate is 〉5 mm h^-1. The more intensive the rain rates, the higher accuracy of the estimation.
文摘基于微波多层板技术,通过对单片微波集成电路(MMIC)、微机电系统(MEMS)和低温共烧陶瓷(LTCC)滤波器等微组装工艺的优化和分析,使多通道接收前端进一步实现小型化设计和应用。同时,对电路和结构进行改进,使前端组件具有更好的幅相一致性和高隔离度。最终实现的C频段四通道接收前端尺寸为120 mm×50 mm×12 mm,幅相一致性分别小于±0.8 d B和±5°,通道间隔离度高于60 d Bc。该设计方法的实现为小型化多通道接收前端的工程化应用提供了一种有效的解决方案。