Loss-of-function mutants are fundamental resources for gene function studies.However,it is difficult to generate viable and heritable knockout mutants for essential genes.Here,we show that targeted editing of the C-te...Loss-of-function mutants are fundamental resources for gene function studies.However,it is difficult to generate viable and heritable knockout mutants for essential genes.Here,we show that targeted editing of the C-terminal sequence of the embryo lethal gene MITOGEN-ACTIVATED PROTEIN KINASES 1(OsMPK1)results in weak mutants.This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations.Using the same C-terminal editing approach,we also obtained viable mutants for a wallassociated protein kinase(Os07g0493200)and a leucine-rich repeat receptor-like protein kinase(Os01g0239700),while the null mutations of these genes were lethal.These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus,which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering.展开更多
AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis ...AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit's C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.展开更多
Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation,...Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.展开更多
The vast majority of p53 missense mutants lose the wild-type (wt) function and/or exert ‘dominant-negative’ effects on their wt counterpart. Here, we identify a novel form of p53 mutation with an extended C-terminus...The vast majority of p53 missense mutants lose the wild-type (wt) function and/or exert ‘dominant-negative’ effects on their wt counterpart. Here, we identify a novel form of p53 mutation with an extended C-terminus (p53 long C-terminus, p53LC) in a variety of human cancers. Interestingly, the two representative mutants (named ‘p53-374*48’ and ‘p53-393*78’) as tested in this study show both loss-of-function and dominant-negative phenotypes in cell proliferation and colony formation assays. Mechanistically, p53LCs interact with and retain wt p53 in the cytoplasm and prevent it from binding to the promoters of target genes, consequently inhibiting its transcriptional activity. Also, p53LCs are very stable, though not acetylated in cells. Remarkably, the p53LCs can desensitize wt p53-containing cancer cells to p53-activating agents. Together, our results unveil a longer form of p53 mutant that possesses a dominant-negative effect on its wt counterpart, besides losing its wt activity.展开更多
Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutati...Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutations are not fully understood. The objective of this study is to identify the underlying genetic basis of a Chinese family with LQTS and to characterize the clinical manifestations properties of the mutation. Single strand conformation polymorphism (SSCP) analyses were conducted on DNA fragments amplified by polymerase chain reaction from five LQT-related genes. Aberrant conformers were analyzed by DNA sequencing. A novel splice mutation in C-terminus of HERG was identified in this Chinese LQTS family,leading to the deletion of 11-bp at the acceptor splice site of Exon9 [Exon9 IVS del (-12→-2)]. The mutation might affect,through deficient splicing, the putative cyclic nucleotide binding domain (CNBD) of the HERG K+ channel. This mutation resulted in a mildly affected phenotype. Only the proband had a history of syncopes, while the other three individuals with long QT interval had no symptoms. Two other mutation carriers displayed normal phenotype. No sudden death occurred in the family. The 4 affected individuals and the two silent mutation carriers were all heterozygous for the mutation. It is the first splice mutation of HERG reported in Chinese LQTS families. Clinical data suggest that the CNBD mutation may be less malignant than mutations occurring in the pore region and be partially dominant over wild-type function.展开更多
基金supported by the National Natural Science Foundation of China(32293243)Fundamental Research Funds for the Central Universities(2021ZKPY002,2662023PY006)supported by Hainan Yazhou Bay Seed Laboratory and the China National Seed Group(project B23YQ1516).
文摘Loss-of-function mutants are fundamental resources for gene function studies.However,it is difficult to generate viable and heritable knockout mutants for essential genes.Here,we show that targeted editing of the C-terminal sequence of the embryo lethal gene MITOGEN-ACTIVATED PROTEIN KINASES 1(OsMPK1)results in weak mutants.This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations.Using the same C-terminal editing approach,we also obtained viable mutants for a wallassociated protein kinase(Os07g0493200)and a leucine-rich repeat receptor-like protein kinase(Os01g0239700),while the null mutations of these genes were lethal.These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus,which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering.
基金Supported by German Research Foundation(Cluster of Excellence"Unifying Concepts in Catalysis")
文摘AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit's C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.
文摘Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.
文摘The vast majority of p53 missense mutants lose the wild-type (wt) function and/or exert ‘dominant-negative’ effects on their wt counterpart. Here, we identify a novel form of p53 mutation with an extended C-terminus (p53 long C-terminus, p53LC) in a variety of human cancers. Interestingly, the two representative mutants (named ‘p53-374*48’ and ‘p53-393*78’) as tested in this study show both loss-of-function and dominant-negative phenotypes in cell proliferation and colony formation assays. Mechanistically, p53LCs interact with and retain wt p53 in the cytoplasm and prevent it from binding to the promoters of target genes, consequently inhibiting its transcriptional activity. Also, p53LCs are very stable, though not acetylated in cells. Remarkably, the p53LCs can desensitize wt p53-containing cancer cells to p53-activating agents. Together, our results unveil a longer form of p53 mutant that possesses a dominant-negative effect on its wt counterpart, besides losing its wt activity.
基金Project (No. 021107613) supported by the Science and Technology Research Foundation of Zhejiang Province, China
文摘Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutations are not fully understood. The objective of this study is to identify the underlying genetic basis of a Chinese family with LQTS and to characterize the clinical manifestations properties of the mutation. Single strand conformation polymorphism (SSCP) analyses were conducted on DNA fragments amplified by polymerase chain reaction from five LQT-related genes. Aberrant conformers were analyzed by DNA sequencing. A novel splice mutation in C-terminus of HERG was identified in this Chinese LQTS family,leading to the deletion of 11-bp at the acceptor splice site of Exon9 [Exon9 IVS del (-12→-2)]. The mutation might affect,through deficient splicing, the putative cyclic nucleotide binding domain (CNBD) of the HERG K+ channel. This mutation resulted in a mildly affected phenotype. Only the proband had a history of syncopes, while the other three individuals with long QT interval had no symptoms. Two other mutation carriers displayed normal phenotype. No sudden death occurred in the family. The 4 affected individuals and the two silent mutation carriers were all heterozygous for the mutation. It is the first splice mutation of HERG reported in Chinese LQTS families. Clinical data suggest that the CNBD mutation may be less malignant than mutations occurring in the pore region and be partially dominant over wild-type function.