使用放射性同位素在生命科学领域有着悠久的历史,14C和41Ca作为两种长寿命放射性核素已被广泛应用于生物体代谢的示踪研究。加速器质谱(accelerator mass spectrometry,AMS)测量技术作为一种能够准确测量低丰度、长寿命同位素的核分析技...使用放射性同位素在生命科学领域有着悠久的历史,14C和41Ca作为两种长寿命放射性核素已被广泛应用于生物体代谢的示踪研究。加速器质谱(accelerator mass spectrometry,AMS)测量技术作为一种能够准确测量低丰度、长寿命同位素的核分析技术,克服了传统质谱存在的分子本底和同量异位素本底干扰的限制。该方法不受检测物质的复合结构及基体效应的影响,非常适合14C与41Ca生物样品的测量。介绍了AMS测量技术的基本原理和优势及目前通过该技术测量14C与41Ca在生物代谢研究中的应用情况。重点介绍了中国原子能科学研究院AMS小组目前正在从事的14C与41Ca在生物代谢领域的测量工作。展开更多
NAC transcription factors(TFs)are pivotal in plant immunity against diverse pathogens.Here,we report the functional and regulatory network of MNAC3,a novel NAC TF,in rice immunity.MNAC3,a transcriptional activator,neg...NAC transcription factors(TFs)are pivotal in plant immunity against diverse pathogens.Here,we report the functional and regulatory network of MNAC3,a novel NAC TF,in rice immunity.MNAC3,a transcriptional activator,negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern(PAMP)-triggered immune responses.MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80,OsJAZ10,and OsJAZ11.The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10.MNAC3 interacts with immunity-related OsPP2C41(a protein phosphatase),ONAC066(a NAC TF),and OsDjA6(a DnaJ chaperone).ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity,while OsDjA6 promotes it.Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity.OsPP2C41,which plays positive roles in rice blast resistance and chitin-triggered immune responses,dephosphorylates MNAC3,suppressing its transcriptional activity on the target genes OsINO80,OsJAZ10,and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm.These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3,attenuating its transcriptional activity on downstream immune-negative target genes in rice.Together,these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.展开更多
文摘使用放射性同位素在生命科学领域有着悠久的历史,14C和41Ca作为两种长寿命放射性核素已被广泛应用于生物体代谢的示踪研究。加速器质谱(accelerator mass spectrometry,AMS)测量技术作为一种能够准确测量低丰度、长寿命同位素的核分析技术,克服了传统质谱存在的分子本底和同量异位素本底干扰的限制。该方法不受检测物质的复合结构及基体效应的影响,非常适合14C与41Ca生物样品的测量。介绍了AMS测量技术的基本原理和优势及目前通过该技术测量14C与41Ca在生物代谢研究中的应用情况。重点介绍了中国原子能科学研究院AMS小组目前正在从事的14C与41Ca在生物代谢领域的测量工作。
基金supported by grants from the National Natural Science Foundation of China(32072403,31871945)the National Key Research and Development Program of China(2016YFD0100600).
文摘NAC transcription factors(TFs)are pivotal in plant immunity against diverse pathogens.Here,we report the functional and regulatory network of MNAC3,a novel NAC TF,in rice immunity.MNAC3,a transcriptional activator,negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern(PAMP)-triggered immune responses.MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80,OsJAZ10,and OsJAZ11.The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10.MNAC3 interacts with immunity-related OsPP2C41(a protein phosphatase),ONAC066(a NAC TF),and OsDjA6(a DnaJ chaperone).ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity,while OsDjA6 promotes it.Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity.OsPP2C41,which plays positive roles in rice blast resistance and chitin-triggered immune responses,dephosphorylates MNAC3,suppressing its transcriptional activity on the target genes OsINO80,OsJAZ10,and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm.These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3,attenuating its transcriptional activity on downstream immune-negative target genes in rice.Together,these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.