Electronic structure engineering is a powerful method to tailor the behavior of adsorbed intermediates on the surface of catalysts,thus regulating catalytic activity towards CO_(2)electroreduction.Herein,we prepared a...Electronic structure engineering is a powerful method to tailor the behavior of adsorbed intermediates on the surface of catalysts,thus regulating catalytic activity towards CO_(2)electroreduction.Herein,we prepared a series of P-doped Cu catalysts for CO_(2)electroreduction into multi-carbon(C_(2+))products by regulating the surface electronic structure of Cu.The introduction of P could stabilize the surface Cu^(δ+)species,enhancing the activity for C_(2+)products via adjusting the adsorbed strength of the CO intermediates(~*CO).When the molar ratio of P to Cu was 8.3%,the catalyst exhibited a Faradaic efficiency of 64%for C_(2+)products,which was 1.9 times as high as that(33%)for Cu catalysts at the applied current density of 210 m A cm^(-2).Notably,at the applied current density of 300 mA cm^(-2),the P-doped Cu catalyst with the molar ratio of P to Cu of 8.3%exhibited the highest partial current density for C_(2+)products of 176 mA cm^(-2),whereas the partial current density for C_(2+)products over the Cu catalyst was only 84 mA cm^(-2).Mechanistic studies revealed that modulating the molar ratios of P to Cu regulated the adsorbed strength of~*CO.A moderate adsorbed strength of *CO induced by appropriate P doping was responsible for the facilitated C–C coupling process.展开更多
基金supported by National Science Fund for Distinguished Young Scholars(21925204)the National Natural Science Foundation of China(U1932146,U19A2015,21673214,and U1732272)+3 种基金National Key Research and Development Program of China(2019YFA0405600,2017YFA0403402,and 2019YFA0405602)Key Research Program of Frontier Sciences of the CAS(QYZDB-SSW-SLH017)Fundamental Research Funds for the Central UniversitiesUSTC Research Funds of the Double First-Class Initiative(YD2340002002)。
文摘Electronic structure engineering is a powerful method to tailor the behavior of adsorbed intermediates on the surface of catalysts,thus regulating catalytic activity towards CO_(2)electroreduction.Herein,we prepared a series of P-doped Cu catalysts for CO_(2)electroreduction into multi-carbon(C_(2+))products by regulating the surface electronic structure of Cu.The introduction of P could stabilize the surface Cu^(δ+)species,enhancing the activity for C_(2+)products via adjusting the adsorbed strength of the CO intermediates(~*CO).When the molar ratio of P to Cu was 8.3%,the catalyst exhibited a Faradaic efficiency of 64%for C_(2+)products,which was 1.9 times as high as that(33%)for Cu catalysts at the applied current density of 210 m A cm^(-2).Notably,at the applied current density of 300 mA cm^(-2),the P-doped Cu catalyst with the molar ratio of P to Cu of 8.3%exhibited the highest partial current density for C_(2+)products of 176 mA cm^(-2),whereas the partial current density for C_(2+)products over the Cu catalyst was only 84 mA cm^(-2).Mechanistic studies revealed that modulating the molar ratios of P to Cu regulated the adsorbed strength of~*CO.A moderate adsorbed strength of *CO induced by appropriate P doping was responsible for the facilitated C–C coupling process.