The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million ton...The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the 展开更多
This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province,...This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of -4.8‰--7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.展开更多
Polyoxometalates(POMs)have conducive properties such as controlled Bronsted and Lewis acidity,high thermal stability,nontoxic nature,tunable solubility,and less corrosiveness.POMs have been extensively applied in cata...Polyoxometalates(POMs)have conducive properties such as controlled Bronsted and Lewis acidity,high thermal stability,nontoxic nature,tunable solubility,and less corrosiveness.POMs have been extensively applied in catalytic organic reactions and have an exciting prospect for industrial applications.This review summarized recent progress in the application of POMs as acid catalysts for various organic reactions including C-C bond formation,C-N bond formation,C-O bond formation,heterocyclic synthesis reactions,cyanosilylation and hydrolysis reactions.Various POMs catalysts including heteropoly acids(HPAs)and cationic functionalized HPAs with Bronsted acidity,HPAs supported on non-precious metal support with Bronsted acidity(or both Bronsted and Lewis acidity),transition metal substituted POMs with Lewis acidity were applied in above reactions.This review attempts to provide up-to-date information about POMs acid-catalyzed organic reactions and propose future prospects.展开更多
C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient cat...C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient catalysts for C–Oactivation with ultralow-loading noble and non-noble metals is highly desirable for the improvement of metal atomic utilization.Herein,bimetallic catalysts with atomically dispersed Pt and NiO clusters on different supports were fabricated,and the prepared Pt^(δ+)-NiO/Nb_(2)O_(5)and Pt^(δ+)-NiO/TiO_(2)showed outstanding activity for the hydrogenolysis of benzyl phenyl ether with>99%yield of phenol and toluene due to the excellent cooperation of atomically dispersed Pt and NiO clusters.The synergy mechanism between Pt and Ni and their respective roles in the bimetallic catalyst for C–O hydrogenolysis were clearly clarified.These findings deepen our understanding of the synergy of the two active components and are expected to provide new design concepts for the development of multicomponents catalysts.展开更多
The reductive cross-coupling between C(aryl)—O and Si—Cl bonds is of much importance as a valuable strategy for the construction of C(aryl)—Si bonds but has remained a great challenge.Herein,we report a reductive c...The reductive cross-coupling between C(aryl)—O and Si—Cl bonds is of much importance as a valuable strategy for the construction of C(aryl)—Si bonds but has remained a great challenge.Herein,we report a reductive cross-coupling of diaryl ethers and chlorosilanes via strong electrophilic C(aryl)—O and Si—Cl bonds cleavage by iron catalysis,which constitutes an efficient protocol for the synthesis of a range of functionalized arylsilanes.The combination of low cost FeCl2 as the precatalyst and iPrMgCl as the reductant shows high activity in the successive cleavage of unactivated C(aryl)—O bonds of diaryl ethers and strong electrophilic Si—Cl bonds of chlorosilanes,allowing their cross-coupling in a reductive fashion.The low-valent iron species generated in situ by reduction of FeCl2 with iPrMgCl was proposed,which prefers to initially cleavage the C(aryl)—O bond of diaryl ethers with the chelation help of an o-amide auxiliary.展开更多
Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism rem...Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.展开更多
Sulfated tin oxide (STO) has been found to be an efficient reusable solid superacid catalyst for C3-alkylation and O-alkylation of 4-hydroxycoumarins with benzylic, allylic alcohols/and corresponding acetates respecti...Sulfated tin oxide (STO) has been found to be an efficient reusable solid superacid catalyst for C3-alkylation and O-alkylation of 4-hydroxycoumarins with benzylic, allylic alcohols/and corresponding acetates respectively, in acetic acid under reflux conditions with good yield of products.展开更多
Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition....Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition.The resulted Ti^(Ⅳ)-Csp^(3)bond in oxametallacyclo-hexane was tantamount to the elaborately-designed Ti-alkyl complexes,competent to activate intramolecular Csp^(2)-H bond,forming ortho-cyclometalated complex[N_(2)NCH_(2)C_(6)H_(4)]Ti^(Ⅳ)(O^(n)Bu)(5).Key intermediates were isolated and fully characterized by X-ray crystal-lography.Mechanistic studies revealed that the oxidative addition of C-O bond took place at Ti^(Ⅱ)-center via a radical intermediate,while a Csp^(2)-H bond activation proceeded byσ-bond metathesis with a kitelike four-centered Ti^(Ⅳ)-transition state.展开更多
Solar-driven cross-coupling reactions by dual nickel/photocatalysis under mild conditions have received considerable attention.However,the existing photo/nickel dual catalytic cross-coupling reactions require the addi...Solar-driven cross-coupling reactions by dual nickel/photocatalysis under mild conditions have received considerable attention.However,the existing photo/nickel dual catalytic cross-coupling reactions require the addition of expensive photosensitizers and organic ligands,and the catalytic activity is inadequate.Herein,we report a nickel single-atom heterogeneous catalyst supported on mesoporous carbon nitride for photocatalytic C—O coupling reaction between 4-bromobenzonitrile and ethanol,affording 4-ethoxybenzonitrile in excellent yield compared to a semi-heterogeneous catalytic system.The catalytic system exhibits a broad substrate scope including ketones,aldehydes,esters,and amides.This work presents a simple and cost-effective strategy for anchoring metal single atoms onto carbon nitride,providing a new platform for enabling high-performance photocatalytic production of aryl ether compounds.展开更多
Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, Sout...Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, South China. They dominantly consist of fibrous calcite crystals with smooth and tight boundaries, forming fence- like inward, syntaxial growth clusters toward the vein center along which a median suture line generally occurs. Petrographic evidence indicates that these veins may form at relatively shallow burial depth, where fluid overpres- sures would have incrementally created the bed-parallel vein space, resulting in displacive growth of fibrous calcite. On the other hand, the C, O and S isotopic data across the vein reveal slightly depleted δ13Ccarb values (-3.32 ‰ to +0.19‰ VPDB) and moderately depleted δSOcarb values (--9.6 ‰ to --7.3 ‰ VPDB) with respect to those of coeval seawaters and slightly heavier δ34Spyrite values (--7.88 ‰ CDT) with respect to those of ambient rocks. Stable isotope evidence consistently suggests significant contribution of bacterial sulfate reduction (BSR) to the formation of the fibrous calcite cements in the vein. The BSR could have been intensive with the availabilities of residual sulfate and abundant organic matters in the Chihsia sediments during shallow burial, increasing the alkalinity of pore waters and further promoting carbonate precipitation. Thus, the bedding-parallel fibrous calcite vein in the upper Lower Permian Chihsia Formation is an important time-specific petrographic capsule, providing clues for understanding the diagenetic process in organic- rich sediments.展开更多
The Anjing Hitam Pb-Zn deposit in northern Sumatra(Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous–Permian Kluet For...The Anjing Hitam Pb-Zn deposit in northern Sumatra(Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous–Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization:(I) sedimentary and(Ⅱ) hydrothermal mineralization. Ore-related calcite from both stages Ⅰ and Ⅱ contains mainly liquid-and gas-liquid two-phase-type fluid inclusions(FI). For stage I ore-forming fluids, FI homogenization temperatures(T_h) are 105 to 199 oC, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage Ⅱ, the T_h(206 to 267 oC) and salinity(19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids(probably from deep-lying plutons), whereas the stage Ⅱ ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the Anjing Hitam deposit was a Carboniferous exhalative sedimentary(SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.展开更多
Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and ...Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and stability in the aldol condensation of biomass-derived carbonyl molecules. It is found that in the aldol condensation of furfural with 4-heptanone, Nb2O5 has obviously superior activity, which is not only better than that of other common solid acid catalysts (ZrO2 and Al2O3), more importantly, but also better than that of solid base catalysts (MgO, CaO, and magnesium- aluminum hydrotalcite). The detailed characterizations by N2 sorption/desorption, NH3-TPD, Py-FTIR and DRIFTS study of acetone adsorption reveal that Nb2O5 has a strong ability to activate the C=O bond in carbonyl molecules, which helps to generate a metal enolate intermediate and undergo the nucleophilic addition to form a new C–C bond. Furthermore, the applicability of Nb2O5 to aldol condensation is extended to other biomass-derived carbonyl molecules and high yields of target fuel precursors are obtained. Finally, a multifunctional Pd/Nb2O5 catalyst is prepared and successfully used in the one-pot synthesis of liquid alkanes from biomass-derived carbonyl molecules by combining the aldol condensation with the sequential hydrodeoxygenation.展开更多
基金jointly by National Basic Research Program of China(973 Program) (2007CB411402)the Knowledge innovation project of Chinese Academy of Sciences(KZCX2-YW-Q04-05, KZCX2-YW-111-03)the National Natural Science Foundation of China(No.40573036).
文摘The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the
基金This work was financially funded by the Chinese Academy of Sciences (Grant. No. KZCX1-07) the Ministry of Science and Technology of China (Grant No. 1999043210)partly by the National Natural Science Foundation of China (Grant. No. 49873022).
文摘This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of -4.8‰--7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.
基金supported by the National Natural Science Foundation of China(No.22001034)Jiangxi Provincial Natural Science Foundation(No.20212BAB213001)the Open Fund of the Jiangxi Province Key Laboratory of Synthetic Chemistry(No.JXSC202008)。
文摘Polyoxometalates(POMs)have conducive properties such as controlled Bronsted and Lewis acidity,high thermal stability,nontoxic nature,tunable solubility,and less corrosiveness.POMs have been extensively applied in catalytic organic reactions and have an exciting prospect for industrial applications.This review summarized recent progress in the application of POMs as acid catalysts for various organic reactions including C-C bond formation,C-N bond formation,C-O bond formation,heterocyclic synthesis reactions,cyanosilylation and hydrolysis reactions.Various POMs catalysts including heteropoly acids(HPAs)and cationic functionalized HPAs with Bronsted acidity,HPAs supported on non-precious metal support with Bronsted acidity(or both Bronsted and Lewis acidity),transition metal substituted POMs with Lewis acidity were applied in above reactions.This review attempts to provide up-to-date information about POMs acid-catalyzed organic reactions and propose future prospects.
基金supported by the National Key Research and Development Program of China(grant no.2022YFA1504901)the National Natural Science Foundation of China(grant nos.22003069,22293012,22179132,22072157,22121002,and 22302209).
文摘C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient catalysts for C–Oactivation with ultralow-loading noble and non-noble metals is highly desirable for the improvement of metal atomic utilization.Herein,bimetallic catalysts with atomically dispersed Pt and NiO clusters on different supports were fabricated,and the prepared Pt^(δ+)-NiO/Nb_(2)O_(5)and Pt^(δ+)-NiO/TiO_(2)showed outstanding activity for the hydrogenolysis of benzyl phenyl ether with>99%yield of phenol and toluene due to the excellent cooperation of atomically dispersed Pt and NiO clusters.The synergy mechanism between Pt and Ni and their respective roles in the bimetallic catalyst for C–O hydrogenolysis were clearly clarified.These findings deepen our understanding of the synergy of the two active components and are expected to provide new design concepts for the development of multicomponents catalysts.
基金financial support from the National Natural Science Foundation of China(21901206)Postdoctoral Science Foundation of China(2022M712589)+2 种基金General key R&D Projects in Shaanxi Province(2023-YBGY-321)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0826)Fundamental Research Funds for the Central Universities and the Haihe Laboratory of Sustainable Chemical Transformation.
文摘The reductive cross-coupling between C(aryl)—O and Si—Cl bonds is of much importance as a valuable strategy for the construction of C(aryl)—Si bonds but has remained a great challenge.Herein,we report a reductive cross-coupling of diaryl ethers and chlorosilanes via strong electrophilic C(aryl)—O and Si—Cl bonds cleavage by iron catalysis,which constitutes an efficient protocol for the synthesis of a range of functionalized arylsilanes.The combination of low cost FeCl2 as the precatalyst and iPrMgCl as the reductant shows high activity in the successive cleavage of unactivated C(aryl)—O bonds of diaryl ethers and strong electrophilic Si—Cl bonds of chlorosilanes,allowing their cross-coupling in a reductive fashion.The low-valent iron species generated in situ by reduction of FeCl2 with iPrMgCl was proposed,which prefers to initially cleavage the C(aryl)—O bond of diaryl ethers with the chelation help of an o-amide auxiliary.
基金supported by the Central Public Welfare Scientific Research Basic Scientific Research Business Expenses(Grant Nos.KK2005,KY1603)National Natural Science Foundation of China(Grant No.U20A2092)+1 种基金the National Basic Research Program of China(973 Program)(Grant No.2011CB403007)the China Geological Survey(Grant No.DD20190606)。
文摘Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.
文摘Sulfated tin oxide (STO) has been found to be an efficient reusable solid superacid catalyst for C3-alkylation and O-alkylation of 4-hydroxycoumarins with benzylic, allylic alcohols/and corresponding acetates respectively, in acetic acid under reflux conditions with good yield of products.
基金support from the National Natural Science Foundation of China(Nos.21988101,21881220232,21811530004,21761132027,22071029,22201044,U19B6002)Key-Area Research and Development Program of Guangdong Province(2020B010188001).
文摘Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition.The resulted Ti^(Ⅳ)-Csp^(3)bond in oxametallacyclo-hexane was tantamount to the elaborately-designed Ti-alkyl complexes,competent to activate intramolecular Csp^(2)-H bond,forming ortho-cyclometalated complex[N_(2)NCH_(2)C_(6)H_(4)]Ti^(Ⅳ)(O^(n)Bu)(5).Key intermediates were isolated and fully characterized by X-ray crystal-lography.Mechanistic studies revealed that the oxidative addition of C-O bond took place at Ti^(Ⅱ)-center via a radical intermediate,while a Csp^(2)-H bond activation proceeded byσ-bond metathesis with a kitelike four-centered Ti^(Ⅳ)-transition state.
基金supported by the National Natural Science Foundation of China(22202105,22101133,22205113,22002043)the Natural Science Foundation of Jiangsu Province(BK20210608,BK20200768,BK20210626)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(21KJA150003,21KJB150027)the China Postdoctoral Science Foundation(2022M711645).
文摘Solar-driven cross-coupling reactions by dual nickel/photocatalysis under mild conditions have received considerable attention.However,the existing photo/nickel dual catalytic cross-coupling reactions require the addition of expensive photosensitizers and organic ligands,and the catalytic activity is inadequate.Herein,we report a nickel single-atom heterogeneous catalyst supported on mesoporous carbon nitride for photocatalytic C—O coupling reaction between 4-bromobenzonitrile and ethanol,affording 4-ethoxybenzonitrile in excellent yield compared to a semi-heterogeneous catalytic system.The catalytic system exhibits a broad substrate scope including ketones,aldehydes,esters,and amides.This work presents a simple and cost-effective strategy for anchoring metal single atoms onto carbon nitride,providing a new platform for enabling high-performance photocatalytic production of aryl ether compounds.
基金supported by the National Natural Science Foundation of China(40839907,41302021 and41203030)
文摘Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, South China. They dominantly consist of fibrous calcite crystals with smooth and tight boundaries, forming fence- like inward, syntaxial growth clusters toward the vein center along which a median suture line generally occurs. Petrographic evidence indicates that these veins may form at relatively shallow burial depth, where fluid overpres- sures would have incrementally created the bed-parallel vein space, resulting in displacive growth of fibrous calcite. On the other hand, the C, O and S isotopic data across the vein reveal slightly depleted δ13Ccarb values (-3.32 ‰ to +0.19‰ VPDB) and moderately depleted δSOcarb values (--9.6 ‰ to --7.3 ‰ VPDB) with respect to those of coeval seawaters and slightly heavier δ34Spyrite values (--7.88 ‰ CDT) with respect to those of ambient rocks. Stable isotope evidence consistently suggests significant contribution of bacterial sulfate reduction (BSR) to the formation of the fibrous calcite cements in the vein. The BSR could have been intensive with the availabilities of residual sulfate and abundant organic matters in the Chihsia sediments during shallow burial, increasing the alkalinity of pore waters and further promoting carbonate precipitation. Thus, the bedding-parallel fibrous calcite vein in the upper Lower Permian Chihsia Formation is an important time-specific petrographic capsule, providing clues for understanding the diagenetic process in organic- rich sediments.
基金financially supported by the National Basic Research Program of China (No. 2014CB440901)
文摘The Anjing Hitam Pb-Zn deposit in northern Sumatra(Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous–Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization:(I) sedimentary and(Ⅱ) hydrothermal mineralization. Ore-related calcite from both stages Ⅰ and Ⅱ contains mainly liquid-and gas-liquid two-phase-type fluid inclusions(FI). For stage I ore-forming fluids, FI homogenization temperatures(T_h) are 105 to 199 oC, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage Ⅱ, the T_h(206 to 267 oC) and salinity(19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids(probably from deep-lying plutons), whereas the stage Ⅱ ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the Anjing Hitam deposit was a Carboniferous exhalative sedimentary(SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.
基金financially supported by the National Natural Science Foundation of China(No.21832002,21872050,and 21808063)the Fundamental Research Funds for the Central Universities(222201718003)+1 种基金the Science and Technology Commission of Shanghai Municipality(18ZR1408500,10dz2220500)the “Zhang Jiangshu” Excellent Ph.D.Project of ECUST~~
文摘Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and stability in the aldol condensation of biomass-derived carbonyl molecules. It is found that in the aldol condensation of furfural with 4-heptanone, Nb2O5 has obviously superior activity, which is not only better than that of other common solid acid catalysts (ZrO2 and Al2O3), more importantly, but also better than that of solid base catalysts (MgO, CaO, and magnesium- aluminum hydrotalcite). The detailed characterizations by N2 sorption/desorption, NH3-TPD, Py-FTIR and DRIFTS study of acetone adsorption reveal that Nb2O5 has a strong ability to activate the C=O bond in carbonyl molecules, which helps to generate a metal enolate intermediate and undergo the nucleophilic addition to form a new C–C bond. Furthermore, the applicability of Nb2O5 to aldol condensation is extended to other biomass-derived carbonyl molecules and high yields of target fuel precursors are obtained. Finally, a multifunctional Pd/Nb2O5 catalyst is prepared and successfully used in the one-pot synthesis of liquid alkanes from biomass-derived carbonyl molecules by combining the aldol condensation with the sequential hydrodeoxygenation.