目的:利用数字乳腺断层摄影(digital breast tomosynthesis,DBT)评估病变边缘方面的优势,探讨DBT图像的毛刺征象与Ki-67增殖指数的关系。方法:回顾并纳入2022年3月—2023年4月于郑州大学第一附属医院就诊的99例浸润性乳腺癌患者的DBT影...目的:利用数字乳腺断层摄影(digital breast tomosynthesis,DBT)评估病变边缘方面的优势,探讨DBT图像的毛刺征象与Ki-67增殖指数的关系。方法:回顾并纳入2022年3月—2023年4月于郑州大学第一附属医院就诊的99例浸润性乳腺癌患者的DBT影像学资料,所有患者在DBT图像中均表现为毛刺型肿块。对99例乳腺毛刺型肿块的肿块大小、毛刺的长度和宽度、肿瘤边缘毛刺的覆盖情况及毛刺的数量进行分析,并收集患者的一般临床资料,比较各参数在Ki-67增殖指数之间的差异。采用多因素logistic回归分析Ki-67增殖指数的独立预测因素,并采用受试者工作特征曲线评价其诊断效能。结果:Ki-67增殖指数高低患者之间DBT图像毛刺特征,包括毛刺长度与毛刺宽度比较差异均有统计学意义(P<0.05),而毛刺数量、患者年龄、绝经状态及肿块大小差异无统计学意义(P=0.060,P=0.175,P=0.507,P=0.050)。多因素logistic回归模型分析显示,毛刺长度(OR=0.036,P<0.001)、毛刺宽度(OR=8.829,P<0.001)为Ki-67增殖指数的独立预测因素。将毛刺长度与毛刺宽度联合后,诊断效能最好,AUC为0.897。结论:乳腺癌DBT图像中的毛刺征分析可作为一种无创预测恶性肿瘤增殖活性的方法,从而判断患者的预后。展开更多
文摘目的:利用数字乳腺断层摄影(digital breast tomosynthesis,DBT)评估病变边缘方面的优势,探讨DBT图像的毛刺征象与Ki-67增殖指数的关系。方法:回顾并纳入2022年3月—2023年4月于郑州大学第一附属医院就诊的99例浸润性乳腺癌患者的DBT影像学资料,所有患者在DBT图像中均表现为毛刺型肿块。对99例乳腺毛刺型肿块的肿块大小、毛刺的长度和宽度、肿瘤边缘毛刺的覆盖情况及毛刺的数量进行分析,并收集患者的一般临床资料,比较各参数在Ki-67增殖指数之间的差异。采用多因素logistic回归分析Ki-67增殖指数的独立预测因素,并采用受试者工作特征曲线评价其诊断效能。结果:Ki-67增殖指数高低患者之间DBT图像毛刺特征,包括毛刺长度与毛刺宽度比较差异均有统计学意义(P<0.05),而毛刺数量、患者年龄、绝经状态及肿块大小差异无统计学意义(P=0.060,P=0.175,P=0.507,P=0.050)。多因素logistic回归模型分析显示,毛刺长度(OR=0.036,P<0.001)、毛刺宽度(OR=8.829,P<0.001)为Ki-67增殖指数的独立预测因素。将毛刺长度与毛刺宽度联合后,诊断效能最好,AUC为0.897。结论:乳腺癌DBT图像中的毛刺征分析可作为一种无创预测恶性肿瘤增殖活性的方法,从而判断患者的预后。