Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a ...Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a genetic background of 9311. The result showed that six CSSLs had slightly stronger effect on CTB than 9311. Total four quantitative trait loci (QTLs) for CTB were preliminary mapped on chromosomes 5 and 7 by substitution mapping, qCTB-5-1, qCTB-5-2 and qCTB-5-3 were mapped in the region of RM267-RM1237, RM2422-RM6054 and RM3321-RM1054, which were 21.3 cM, 27.4 cM and 12.7 cM in genetic distance on rice chromosome 5, respectively, qCTB-7 was mapped in a 6.8-cM region of RM11-RM2752 on rice chromosome 7.展开更多
挖掘耐冷基因并提高耐冷性对于保证水稻在气候变化条件下的高产稳产具有至关重要的意义。本研究利用‘远恢2号’和‘Y58S’杂交而成的超级杂交稻‘Y两优2号’的高世代重组自交系(RIL F14)276个家系作为作图群体,以SNP为分子标记构建了...挖掘耐冷基因并提高耐冷性对于保证水稻在气候变化条件下的高产稳产具有至关重要的意义。本研究利用‘远恢2号’和‘Y58S’杂交而成的超级杂交稻‘Y两优2号’的高世代重组自交系(RIL F14)276个家系作为作图群体,以SNP为分子标记构建了高密度遗传图谱,对水稻的芽期耐冷性(cold tolerance at the bud bursting period,CTBP)性状进行数量性状位点(quantitative trait locus,QTL)定位分析;同时对全世界范围内收集的水稻自然变异微核心(Minicore)种质群体进行芽期耐冷性全基因组关联分析(genome-wide association study,GWAS)。结果表明,水稻芽期耐冷性在水稻群体内呈连续分布,是由多基因控制的数量性状。同时,在RIL群体的第9号染色体上定位到1个与耐冷性性状相关的QTL,位于区间Block73479和Block72824之间,对表型变异的解释率为9.65%。进一步分析表明该QTL对水稻芽期耐冷性为负显性。结果还显示‘Y两优2号’耐冷性显著强于亲本,具有杂种优势。展开更多
The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl- trichloroethan...The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl- trichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumu-lation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the "bud burst effect" in plants. Compared with those in pine needles in 1980's, the residual levels of HCHs and DDTs have declined obviously in Bei-jing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p′-DDT in recent years; dicofol usage may be the main source of o,p′-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine nee-dles in the corresponding period and there is a strong positive correlation between the OCPs concen-tration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.展开更多
基金supported by the Special Program for Rice Scientific Research in Ministry of Agriculture, China (Grant No.nyhyzx 07-001-006)Special Funds for Construction of Modern Agricultural Industry R & D SystemSelf-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (Grant No. CX [09] 634)
文摘Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a genetic background of 9311. The result showed that six CSSLs had slightly stronger effect on CTB than 9311. Total four quantitative trait loci (QTLs) for CTB were preliminary mapped on chromosomes 5 and 7 by substitution mapping, qCTB-5-1, qCTB-5-2 and qCTB-5-3 were mapped in the region of RM267-RM1237, RM2422-RM6054 and RM3321-RM1054, which were 21.3 cM, 27.4 cM and 12.7 cM in genetic distance on rice chromosome 5, respectively, qCTB-7 was mapped in a 6.8-cM region of RM11-RM2752 on rice chromosome 7.
文摘挖掘耐冷基因并提高耐冷性对于保证水稻在气候变化条件下的高产稳产具有至关重要的意义。本研究利用‘远恢2号’和‘Y58S’杂交而成的超级杂交稻‘Y两优2号’的高世代重组自交系(RIL F14)276个家系作为作图群体,以SNP为分子标记构建了高密度遗传图谱,对水稻的芽期耐冷性(cold tolerance at the bud bursting period,CTBP)性状进行数量性状位点(quantitative trait locus,QTL)定位分析;同时对全世界范围内收集的水稻自然变异微核心(Minicore)种质群体进行芽期耐冷性全基因组关联分析(genome-wide association study,GWAS)。结果表明,水稻芽期耐冷性在水稻群体内呈连续分布,是由多基因控制的数量性状。同时,在RIL群体的第9号染色体上定位到1个与耐冷性性状相关的QTL,位于区间Block73479和Block72824之间,对表型变异的解释率为9.65%。进一步分析表明该QTL对水稻芽期耐冷性为负显性。结果还显示‘Y两优2号’耐冷性显著强于亲本,具有杂种优势。
基金the State Key Development Program for Basic Research of China (Grant No. 2003CB415003)
文摘The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl- trichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumu-lation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the "bud burst effect" in plants. Compared with those in pine needles in 1980's, the residual levels of HCHs and DDTs have declined obviously in Bei-jing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p′-DDT in recent years; dicofol usage may be the main source of o,p′-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine nee-dles in the corresponding period and there is a strong positive correlation between the OCPs concen-tration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.