Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- ch...Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.展开更多
基金financially supported by the Scientific and Technological Research Council of Turkey(Project No:109 O 714)
文摘Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.