Flight feathers stand out with extraordinary mechanical properties for flight because they are lightweight but stiff enough.Their elasticity has great effects on the aerodynamics, resulting in aeroelasticity.Our prima...Flight feathers stand out with extraordinary mechanical properties for flight because they are lightweight but stiff enough.Their elasticity has great effects on the aerodynamics, resulting in aeroelasticity.Our primary task is to figure out the stiffness distribution of the feather to study the aeroelastic effects.The feather shaft is simplified as a beam, and the flexibility matrix of an eagle flight feather is tested.A numerical method is proposed to estimate the stiffness distributions along the shaft length based on an optimal Broyden–Fletcher–Goldfarb–Shanno(BFGS) method with global convergence.An analysis of the compressive behavior of the shaft based on the beam model shows a good fit with experimental results.The stiffness distribution of the shaft is finally presented using a 5 th order polynomial.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51705459)the China Postdoctoral Science Foundation
文摘Flight feathers stand out with extraordinary mechanical properties for flight because they are lightweight but stiff enough.Their elasticity has great effects on the aerodynamics, resulting in aeroelasticity.Our primary task is to figure out the stiffness distribution of the feather to study the aeroelastic effects.The feather shaft is simplified as a beam, and the flexibility matrix of an eagle flight feather is tested.A numerical method is proposed to estimate the stiffness distributions along the shaft length based on an optimal Broyden–Fletcher–Goldfarb–Shanno(BFGS) method with global convergence.An analysis of the compressive behavior of the shaft based on the beam model shows a good fit with experimental results.The stiffness distribution of the shaft is finally presented using a 5 th order polynomial.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.