A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified. The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first ...A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified. The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first leaf to the flag leaf, without pathogen invasion. Initiation of the lesions was induced by light under natural summer field conditions. Expression of pathogenesis-related genes including PAL, PO-C1, POX22.3 and PBZ1 was enhanced significantly in association with cell death and accumulation of H2O2 at and around the site of lesions in the mutant in contrast to that in the wild-type (WT). Disease reaction to Xanthomonas oryzae pv. oryzae from the Philippines and China showed that HM47 is a broad-spectrum disease-resistant mutant with enhanced resistance to multiple races of bacterial blight pathogens tested. An F2 progeny test showed that bacterial blight resistance to race HB-17 was cosegregated with the expression of lesions. Genetic analysis indicated that the spotted-leaf trait was controlled by a single recessive gene, tentatively named spl HM47 , flanked by two insertion/deletion markers in a region of approximately 74 kb on the long arm of chromosome 4. Ten open reading frames are predicted, and all of them are expressed proteins. Isolation and validation of the putative genes are currently underway.展开更多
The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered...The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase- type proteins, Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza spe- cies O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3PXa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance spec- ificity of this locus has been conserved for a long time.展开更多
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b...ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.展开更多
During the climatic fluctuations in the late Late Pleistocene, hominins in China had experienced some significant changes and adaptations in terms of subsistence strategies. Based on the zooarchaeological analyses of ...During the climatic fluctuations in the late Late Pleistocene, hominins in China had experienced some significant changes and adaptations in terms of subsistence strategies. Based on the zooarchaeological analyses of the faunal remains from the Shuidougou site of North China and the Ma'anshan site of South China, the present study demonstratively indicates that the broad-spectrum diet and its closely-related resource intensification for hominins were already at their places roughly at 33–35 cal ka BP. Compared to hominins of earlier period, who would have preferentially exploited large and medium-sized ungulates, hunter-gathers at later period had otherwise incorporated more small-sized animals(especially the quick ones, such as birds and hares) into their diet. Meanwhile, hominins of the later time had also greatly accelerated extractions and exploitations of the nutritional yields from the large and medium-sized animals. However, it seems clear from the current study that there was significant difference regarding the potential mechanisms for the broad-spectrum adaptations of hominins in the late Late Pleistocene of China.展开更多
Background: Confusion often arises in caring for diabetic foot infections and ulcers, especially with antimicrobials;we aim to shed light on this entity and alert healthcare workers to its stewardship. Methods: Record...Background: Confusion often arises in caring for diabetic foot infections and ulcers, especially with antimicrobials;we aim to shed light on this entity and alert healthcare workers to its stewardship. Methods: Records were reviewed between February 2016 and September 2023. Data for patients diagnosed with diabetes and foot ulcers, infected or not, were examined following ICD 9 search terms. Records for patients were included if they were prediabetic/diabetic adults with foot ulcers, more than 18 years old, and on antidiabetic treatment. Patients were excluded if they insulin resistant, with normal HgbA1c levels, wheel-chair dependent, bed-bound, non-diabetic patients, diabetic patients who had vascular lower limb surgery earlier to ulcers, diabetic patients who had aortocoronary bypass, deep venous thrombosis within six months, malignancy, and severe clinical depression. A modified IWGDF/IDSA guidelines definitions for DFI and DFU was considered. Statistical analysis was done using R programming. Statistical methods were employed as appropriate, and a significant P-value was considered for P Results: Most characteristics were well balanced between DFI and DFU, on imaging osteomyelitis and tissue swelling were significantly more in DFI. Endovascular radiological procedures showed angiograms to be considerably more in DFI, while angioplasty was more in DFU, in addition to smoking. Bacteremia was uncommon, and swab cultures were mostly polymicrobial in both ulcers;no clear association with blood bacteria was detected with the polymicrobial growth, though few were concordant. Antimicrobials prescribed for both ulcers were not statistically different except for carbapenems, which were more in DFI (P Conclusion: Attention should be paid to best practices while caring for diabetic ulcers. These include swab culture interpretations, the use of antimicrobials, and plan management according to DFI or DFU to utilize either local care or combination with antimicrobials.展开更多
Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent p...Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.展开更多
Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon n...Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.展开更多
Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized...Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.展开更多
Bile acids(BAs)are natural metabolites in mammals and have the potential to function as drugs against viral infection.However,the limited understanding of chenodeoxycholic acid(CDCA)receptors and downstream signaling,...Bile acids(BAs)are natural metabolites in mammals and have the potential to function as drugs against viral infection.However,the limited understanding of chenodeoxycholic acid(CDCA)receptors and downstream signaling,along with its lower suppression efficiency in inhibiting virus infection limits its clinical application.In this study,we demonstrate that farnesoid X receptor(FXR),the receptor of CDCA,negatively regulates interferon signaling,thereby contributing to the reduced effectiveness of CDCA against virus replication.FXR deficiency or pharmacological inhibition enhances interferon signaling activation to suppress virus infection.Mechanistically,FXR impairs the DNA binding and transcriptional abilities of activated interferon regulatory factor 3(IRF3)through interaction.Reduced IRF3 transcriptional activity by FXReIRF3 interaction significantly undermines the expression of Interferon Beta 1(IFNB1)and the antiviral response of cells,especially upon the CDCA treatment.In FXR-deficient cells,or when combined with Z-guggulsterone(GUGG)treatment,CDCA exhibits a more potent ability to restrict virus infection.Thus,these findings suggest that FXR serves as a limiting factor for CDCA in inhibiting virus replication,which can be attributed to the“signaling-brake”roles of FXR in interferon signaling.Targeting FXR inhibition represents a promising pharmaceutical strategy for the clinical application of BAs metabolites as antiviral drugs.展开更多
Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.The...Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.Therefore,identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding.WRKY transcription factors affect plant growth and stress responses.However,the functions of many WRKY proteins remain to be elucidated.Here,we demonstrated the role of rice(Oryza sativa)WRKY groupⅢtranscription factor OsWRKY65 in immunity.OsWRKY65 localized to the nucleus and acted as transcriptional repressor.Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling.Moreover,OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv.oryzae to enhance immunity against the pathogen.In particular,OsWRKY65directly bound to the promoter region of OsSWEET13 and repressed its expression.Taken together,our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice.展开更多
The established and ongoing prevalence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and seasonal human coronaviruses(HCoV)like HCoV-OC43,HCoV-NL63,and HCoV-229E,pose a continuous threat to public heal...The established and ongoing prevalence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and seasonal human coronaviruses(HCoV)like HCoV-OC43,HCoV-NL63,and HCoV-229E,pose a continuous threat to public health.Therefore,it is urgently needed to explore antiviral drugs with broad-spectrum anti-coronavirus activity.Our previous studies have revealed that lycorine is a potent broad-spectrum anti-coronavirus drug,a natural alkaloid extracted from Amaryllidaceae with various pharmacological and microbiological effects.However,it is unsafe to directly use lycorine as a clinical antiviral drug due to the cytotoxicity and induction of cell apoptosis.In this study,a series of lycorine derivatives were designed and synthesized.One of them,named Ly-8,was found to effectively inhibit the replication of different coronavirus strains in vitro,including SARS-CoV-2.Moreover,Ly-8 was also shown to effectively inhibit HCoVOC43 replication in the central nervous system,and provide effective protection against HCoV-OC43 infection in mice with low drug toxicity.Furthermore,Ly-8-resistant mutants were not observed during the 30 times sequential passages in cell culture.Collectively,these findings suggest that Ly-8 may be a potential candidate drug for the future development of broad-spectrum anti-coronavirus drugs.展开更多
基金supported by the National Hi-Tech Research and Development Program of China(2011AA10A101 and 2012AA101102)the State Key Laboratory of Rice Biology(ZZKT200801)
文摘A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified. The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first leaf to the flag leaf, without pathogen invasion. Initiation of the lesions was induced by light under natural summer field conditions. Expression of pathogenesis-related genes including PAL, PO-C1, POX22.3 and PBZ1 was enhanced significantly in association with cell death and accumulation of H2O2 at and around the site of lesions in the mutant in contrast to that in the wild-type (WT). Disease reaction to Xanthomonas oryzae pv. oryzae from the Philippines and China showed that HM47 is a broad-spectrum disease-resistant mutant with enhanced resistance to multiple races of bacterial blight pathogens tested. An F2 progeny test showed that bacterial blight resistance to race HB-17 was cosegregated with the expression of lesions. Genetic analysis indicated that the spotted-leaf trait was controlled by a single recessive gene, tentatively named spl HM47 , flanked by two insertion/deletion markers in a region of approximately 74 kb on the long arm of chromosome 4. Ten open reading frames are predicted, and all of them are expressed proteins. Isolation and validation of the putative genes are currently underway.
基金This work was supported by grants from the National Program on the Development of Basic Research in China,the National Natural Science Foundation of China
文摘The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase- type proteins, Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza spe- cies O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3PXa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance spec- ificity of this locus has been conserved for a long time.
基金supported by the National Natural Science Foundation of China(Grant No.51871078 and 52071119)Interdisciplinary Research Foundation of HIT(Grant No.IR2021208)+1 种基金State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS38)Heilongjiang Science Foundation(No.LH2020B006).
文摘ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05130302)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-15)the National Natural Science Foundation of China (Grant No. 41302017)
文摘During the climatic fluctuations in the late Late Pleistocene, hominins in China had experienced some significant changes and adaptations in terms of subsistence strategies. Based on the zooarchaeological analyses of the faunal remains from the Shuidougou site of North China and the Ma'anshan site of South China, the present study demonstratively indicates that the broad-spectrum diet and its closely-related resource intensification for hominins were already at their places roughly at 33–35 cal ka BP. Compared to hominins of earlier period, who would have preferentially exploited large and medium-sized ungulates, hunter-gathers at later period had otherwise incorporated more small-sized animals(especially the quick ones, such as birds and hares) into their diet. Meanwhile, hominins of the later time had also greatly accelerated extractions and exploitations of the nutritional yields from the large and medium-sized animals. However, it seems clear from the current study that there was significant difference regarding the potential mechanisms for the broad-spectrum adaptations of hominins in the late Late Pleistocene of China.
文摘Background: Confusion often arises in caring for diabetic foot infections and ulcers, especially with antimicrobials;we aim to shed light on this entity and alert healthcare workers to its stewardship. Methods: Records were reviewed between February 2016 and September 2023. Data for patients diagnosed with diabetes and foot ulcers, infected or not, were examined following ICD 9 search terms. Records for patients were included if they were prediabetic/diabetic adults with foot ulcers, more than 18 years old, and on antidiabetic treatment. Patients were excluded if they insulin resistant, with normal HgbA1c levels, wheel-chair dependent, bed-bound, non-diabetic patients, diabetic patients who had vascular lower limb surgery earlier to ulcers, diabetic patients who had aortocoronary bypass, deep venous thrombosis within six months, malignancy, and severe clinical depression. A modified IWGDF/IDSA guidelines definitions for DFI and DFU was considered. Statistical analysis was done using R programming. Statistical methods were employed as appropriate, and a significant P-value was considered for P Results: Most characteristics were well balanced between DFI and DFU, on imaging osteomyelitis and tissue swelling were significantly more in DFI. Endovascular radiological procedures showed angiograms to be considerably more in DFI, while angioplasty was more in DFU, in addition to smoking. Bacteremia was uncommon, and swab cultures were mostly polymicrobial in both ulcers;no clear association with blood bacteria was detected with the polymicrobial growth, though few were concordant. Antimicrobials prescribed for both ulcers were not statistically different except for carbapenems, which were more in DFI (P Conclusion: Attention should be paid to best practices while caring for diabetic ulcers. These include swab culture interpretations, the use of antimicrobials, and plan management according to DFI or DFU to utilize either local care or combination with antimicrobials.
文摘Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.
基金the National Natural Science Foundation of China(Nos.21876099,22106088,and 22276110)Key Research&Developmental Program of Shandong Province(No.2021CXGC011202)Fundamental Research Funds of Shandong University(No.zy202102).
文摘Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.
文摘Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.
基金supported by the National Natural Science Foundation(NNSF)of China(Nos.82371774 and 81901613)Beijing Nova Program(20230484342,China)Natural Science Foundation of Guangdong Province(2020A1515011299,China).
文摘Bile acids(BAs)are natural metabolites in mammals and have the potential to function as drugs against viral infection.However,the limited understanding of chenodeoxycholic acid(CDCA)receptors and downstream signaling,along with its lower suppression efficiency in inhibiting virus infection limits its clinical application.In this study,we demonstrate that farnesoid X receptor(FXR),the receptor of CDCA,negatively regulates interferon signaling,thereby contributing to the reduced effectiveness of CDCA against virus replication.FXR deficiency or pharmacological inhibition enhances interferon signaling activation to suppress virus infection.Mechanistically,FXR impairs the DNA binding and transcriptional abilities of activated interferon regulatory factor 3(IRF3)through interaction.Reduced IRF3 transcriptional activity by FXReIRF3 interaction significantly undermines the expression of Interferon Beta 1(IFNB1)and the antiviral response of cells,especially upon the CDCA treatment.In FXR-deficient cells,or when combined with Z-guggulsterone(GUGG)treatment,CDCA exhibits a more potent ability to restrict virus infection.Thus,these findings suggest that FXR serves as a limiting factor for CDCA in inhibiting virus replication,which can be attributed to the“signaling-brake”roles of FXR in interferon signaling.Targeting FXR inhibition represents a promising pharmaceutical strategy for the clinical application of BAs metabolites as antiviral drugs.
基金funded by Research Program for Agricultural Science and Technology Development(PJ01570601)and the Fellowship Program(PJ01661001 and PJ01570601)of the National Institute of Agricultural Sciences,Rural Development Administration,Republic of Korea。
文摘Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.Therefore,identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding.WRKY transcription factors affect plant growth and stress responses.However,the functions of many WRKY proteins remain to be elucidated.Here,we demonstrated the role of rice(Oryza sativa)WRKY groupⅢtranscription factor OsWRKY65 in immunity.OsWRKY65 localized to the nucleus and acted as transcriptional repressor.Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling.Moreover,OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv.oryzae to enhance immunity against the pathogen.In particular,OsWRKY65directly bound to the promoter region of OsSWEET13 and repressed its expression.Taken together,our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice.
基金supported by National Natural Science Foundation of China (82002192,32302218)General project of Natural Science Foundation of Hubei Province (2019CFA016,2022CFB539,2022CFD107)+3 种基金Young and Middle-aged Talents Project of Hubei Provincial Education Department (Q20222605)Tianjin Municipal Science and Technology Committee (21JCQNJC01410)China Postdoctoral Science Foundation (2021M702460)Science and Technology Plan (in the field of medical and health care)of Xiangyang (2022YL05B,2022YL12A).
文摘The established and ongoing prevalence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and seasonal human coronaviruses(HCoV)like HCoV-OC43,HCoV-NL63,and HCoV-229E,pose a continuous threat to public health.Therefore,it is urgently needed to explore antiviral drugs with broad-spectrum anti-coronavirus activity.Our previous studies have revealed that lycorine is a potent broad-spectrum anti-coronavirus drug,a natural alkaloid extracted from Amaryllidaceae with various pharmacological and microbiological effects.However,it is unsafe to directly use lycorine as a clinical antiviral drug due to the cytotoxicity and induction of cell apoptosis.In this study,a series of lycorine derivatives were designed and synthesized.One of them,named Ly-8,was found to effectively inhibit the replication of different coronavirus strains in vitro,including SARS-CoV-2.Moreover,Ly-8 was also shown to effectively inhibit HCoVOC43 replication in the central nervous system,and provide effective protection against HCoV-OC43 infection in mice with low drug toxicity.Furthermore,Ly-8-resistant mutants were not observed during the 30 times sequential passages in cell culture.Collectively,these findings suggest that Ly-8 may be a potential candidate drug for the future development of broad-spectrum anti-coronavirus drugs.