In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This ...Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This feature enables distributed sensors to provide a large number of resolved points using a single optical fiber.However,in current systems,this number has remained constrained to a few hundreds of thousands due to the finite signal-to-noise ratio(SNR)of the measurements,which imposes significant challenges in the development of more performing sensors.Here,we propose and experimentally demonstrate an ultimately optimized distributed fiber sensor capable of resolving 2100000 independent points,which corresponds to a one-orderof-magnitude improvement compared to the state-of-the-art.Using a Brillouin distributed fiber sensor based on phase-modulation correlation-domain analysis combined with temporal gating of the pump and time-domain acquisition,a spatial resolution of 8.3 mm is demonstrated over a distance of 17.5 km.The sensor design addresses the most relevant factors impacting the SNR and the performance of medium-to-long range sensors as well as of sub-meter spatial resolution schemes.This step record in the number of resolved points could be reached due to two theoretical models proposed and experimentally validated in this study:one model describes the spatial resolution of the system and its relation with the sampling interval,and the other describes the amplitude response of the sensor,providing an accurate estimation of the SNR of the measurements.展开更多
The method of generating equal-amplitude spectral lines by multi-frequency phase modulation is used in stimulated Brillouin scattering (SBS) suppression. The spectra of three, five, seven, and eleven equalamplitude ...The method of generating equal-amplitude spectral lines by multi-frequency phase modulation is used in stimulated Brillouin scattering (SBS) suppression. The spectra of three, five, seven, and eleven equalamplitude spectral lines are obtained in experiment with flatnesses less than 0.3 dB. Theoretical research on SBS suppression shows that the threshold power after modulation is in reverse proportion to the maximum square of amplitude moduli of fundamental frequency and the nth harmonic wave. The threshold powers of three, five, seven, and eleven equal-amplitude spectral lines are improved by 5.21, 8.36, 9.39, and 10.76 dB, respectively.展开更多
In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel d...In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fi展开更多
In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting ...In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting early movements of soil slopes by the direct embedding of suitable fiber cables in the ground is presented. Furthermore, the same technology can be used to realize innovative inclinometers, as well as smart foundation anchors.展开更多
The distributed sensor is proven to be a powerful tool for civil structural and material process monitoring. Brillouin scattering in fiber can be used as point sensors or distributed sensors for measurement of tempera...The distributed sensor is proven to be a powerful tool for civil structural and material process monitoring. Brillouin scattering in fiber can be used as point sensors or distributed sensors for measurement of temperature, strain, birefringence and vibration over centimeters (Brillouin grating length) for point sensor or the pulse length for the distributed sensor. Simultaneous strain and temperature measurement with a spatial resolution of 20 cm is demonstrated in a Panda fiber using Brillouin grating technique with the temperature accuracy and strain accuracy of 0.4 ℃ and 9 με. This technique can also be used for distributed birefringence measurement. For Brillouin optical time domain analysis (BOTDA), we have developed a new technique to measure differential Brillouin gain instead of Brillouin gain itself. This technique allows high precision temperature and strain measurement over long sensing length with sub-meter spatial resolution: 50-cm spatial resolution for 50-km length, using return-to-zero coded optical pulses of BOTDA with the temperature resolution of 0.7 ℃, which is equivalent to strain accuracy of 12 με. For over 50-km sensing length, we proposed and demonstrated frequency-division-multiplexing (FDM) and time-division-multiplexing (TDM) based BOTDA technique for 75-km and 100-km sensing length without inline amplification within the sensing length. The spatial resolution of 2m (100km) and Brillouin frequency shift accuracy of 1.5 MHz have been obtained for TDM based BOTDA and 1-m resolution (75 km) with Brillouin frequency shift accuracy of 1 MHz using FDM based BOTDA. The civil structural health monitoring with BOTDA technique has been demonstrated.展开更多
In this study, a hybrid algorithm combining genetic algorithm (GA) with back propagation (BP) neural network (GA-BP) was proposed for extracting the characteristics of multi-peak Brillouin scattering spectrum. S...In this study, a hybrid algorithm combining genetic algorithm (GA) with back propagation (BP) neural network (GA-BP) was proposed for extracting the characteristics of multi-peak Brillouin scattering spectrum. Simulations and experimental results show that the GA-BP hybrid algorithm can accurately identify the position and amount of peaks in multi-peak Brillouin scattering spectrum. Moreover, the proposed algorithm obtains a fitting degree of 0.9923 and a mean square error of 0.0094. Therefore, the GA-BP hybrid algorithm possesses a good fitting precision and is suitable for extracting the characteristics of multi-peak Brillouin scattering spectrum.展开更多
Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technol...Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technology in Nanjing University are reviewed.The key technologies to make BOFS with ultra-long distance,high spatial resolution,and fast measuring speed are discussed and realized.展开更多
The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We ca...The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We calculated the transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Brillouin edge signal through filtered double-edge data.We built a detection system to test the performance of this method and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical prediction.The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less than 4.3 MHz and 3.2 MHz,respectively.Moreover,based on the double-edge technique,the accuracy of the extracted temperatures and salinity is approximately 0.1°C and 0.5‰,respectively,indicating significant potential for application in water detection and oceanography.展开更多
This paper reviews the recent advances on the high-performance distributed Brillouin optical fiber sensing, which include the conventional distributed Brillouin optical fiber sensing based on backward stimulated Brill...This paper reviews the recent advances on the high-performance distributed Brillouin optical fiber sensing, which include the conventional distributed Brillouin optical fiber sensing based on backward stimulated Brillouin scattering and two other novel distributed sensing mechanisms based on Brillouin dynamic grating and forward stimulated Brillouin scattering, respectively. As for the conventional distributed Brillouin optical fiber sensing, the spatial resolution has been improved from meter to centimeter in the time-domain scheme and to millimeter in the correlation-domain scheme, respectively;the measurement time has been reduced from minute to millisecond and even to microsecond;the sensing range has reached more than 100 km. Brillouin dynamic grating can be used to measure the birefringence of a polarization-maintaining fiber, which has been explored to realize distributed measurement of temperature, strain, salinity, static pressure, and transverse pressure. More recently, forward stimulated Brillouin scattering has gained considerable interest because of its capacity to detect mechanical features of materials surrounding the optical fiber, and remarkable works using ingenious schemes have managed to realize distributed measurement, which opens a brand-new way to achieve position-resolved substance identification.展开更多
The Brillouin gain properties in a double-clad As2Se3 photonic crystal fiber(PCF)are simulated based on the finite-element method(FEM).The results indicate that the Brillouin gain spectrum(BGS)of our proposed ch...The Brillouin gain properties in a double-clad As2Se3 photonic crystal fiber(PCF)are simulated based on the finite-element method(FEM).The results indicate that the Brillouin gain spectrum(BGS)of our proposed chalcogenide PCF exhibits a multipeaked behavior and has a high Brillouin gain coefficient.We also find that a larger size of inner cladding air holes will lead to a more pronounced second peak in the BGS.On the other hand,the size of the outer cladding has nearly no effect on the BGS behavior.Through these results,one can tailor the Stimulated Brillouin scattering effect in PCFs for a wide range of applications.展开更多
A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity ...A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.展开更多
The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally...The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.展开更多
The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensi...The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement.展开更多
The phase-sensitive optical time-domain reflectometry(φ-OTDR)is a good candidate for distributed dynamic strain sensing,due to its high sensitivity and fast measurement,which has already been widely used in intrusion...The phase-sensitive optical time-domain reflectometry(φ-OTDR)is a good candidate for distributed dynamic strain sensing,due to its high sensitivity and fast measurement,which has already been widely used in intrusion monitoring,geophysical exploration,etc.For the frequency scanning basedφ-OTDR,the phase change manifests itself as a shift of the intensity distribution.The correlation between the reference and measured spectra is employed for relative strain demodulation,which has imposed the continuous measurement for the absolute strain demodulation.Fortunately,the Brillouin optical time domain analysis(BOTDA)allows for the absolute strain demodulation with only one measurement.In this work,the combination of theφ-OTDR and BOTDA has been proposed and demonstrated by using the same set of frequency-scanning optical pulses,and the frequency-agile technique is also introduced for fast measurements.A 9.9 Hz vibration with a strain range of 500 nεhas been measured under two different absolute strains(296.7μεand 554.8με)by integrating the Rayleigh and Brillouin information.The sub-micro strain vibration is demonstrated by theφ-OTDR signal with a high sensitivity of 6.8 nε,while the absolute strain is measured by the BOTDA signal with an accuracy of 5.4με.The proposed sensor allows for dynamic absolute strain measurements with a high sensitivity,thus opening a door for new possibilities which are yet to be explored.展开更多
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement dista...A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrate展开更多
A hybrid phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) system which can realize simultaneous measurement of both dynamic vibration and static ...A hybrid phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) system which can realize simultaneous measurement of both dynamic vibration and static strain is proposed. Because the Rayleigh scattering light and spontaneous Brilliouin scattering light are naturally frequency-multiplexed, the heterodyne asynchronous demodulation of frequency shift keying (FSK) in optical fiber communications is utilized, and the demodulations of the two scattering signals are synchronized. In addition, the forward Raman amplification is introduced to the system, which not only makes up for the deficiency of spontaneous BriUiouin scattering based distributed fiber sensor, but also has the merit of the single end measurement of B-OTDR. The designed φ/B-OTDR hybrid system has the sensing range of 49km with 10m spatial resolution. The vibration and strain experiments show that this hybrid system has great potential for use in long-distance structural health monitoring.展开更多
The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewi...The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewidth of spontaneous Brillouin scattering remains almost constant when the laser linewidth is less than 1 MHz at the same pulse width; otherwise, it increases sharply. A comparison between a fiber laser (FL) with 4-kHz linewidth at 3 dB and a distributed feedback (DFB) laser with 3-MHz linewidth is made experimentally. When a constant laser power is launched into the sensing fiber, the fitting linewidths of the beat signals (backscattered Brillouin light and local oscillator (LO)) is about 5 MHz wider for the DFB laser than for the FL and the intensity of the beat signal is about a half. Furthermore, the frequency fluctuation in the long sensing fiber is lower for the FL source, yielding about 2 MHz less than that of the DFB laser, indicating higher temperature/strain resolution. The experimental results are in good agreement with the numerical simulations.展开更多
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
基金supported by the Swiss National Science Foundation through the project 200021-134546the Swiss State Secretariat for Education,Research and Innovation(SERI)through the project COST C10.0093.
文摘Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This feature enables distributed sensors to provide a large number of resolved points using a single optical fiber.However,in current systems,this number has remained constrained to a few hundreds of thousands due to the finite signal-to-noise ratio(SNR)of the measurements,which imposes significant challenges in the development of more performing sensors.Here,we propose and experimentally demonstrate an ultimately optimized distributed fiber sensor capable of resolving 2100000 independent points,which corresponds to a one-orderof-magnitude improvement compared to the state-of-the-art.Using a Brillouin distributed fiber sensor based on phase-modulation correlation-domain analysis combined with temporal gating of the pump and time-domain acquisition,a spatial resolution of 8.3 mm is demonstrated over a distance of 17.5 km.The sensor design addresses the most relevant factors impacting the SNR and the performance of medium-to-long range sensors as well as of sub-meter spatial resolution schemes.This step record in the number of resolved points could be reached due to two theoretical models proposed and experimentally validated in this study:one model describes the spatial resolution of the system and its relation with the sampling interval,and the other describes the amplitude response of the sensor,providing an accurate estimation of the SNR of the measurements.
文摘The method of generating equal-amplitude spectral lines by multi-frequency phase modulation is used in stimulated Brillouin scattering (SBS) suppression. The spectra of three, five, seven, and eleven equalamplitude spectral lines are obtained in experiment with flatnesses less than 0.3 dB. Theoretical research on SBS suppression shows that the threshold power after modulation is in reverse proportion to the maximum square of amplitude moduli of fundamental frequency and the nth harmonic wave. The threshold powers of three, five, seven, and eleven equal-amplitude spectral lines are improved by 5.21, 8.36, 9.39, and 10.76 dB, respectively.
基金This work was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. 603127.
文摘In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fi
文摘In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting early movements of soil slopes by the direct embedding of suitable fiber cables in the ground is presented. Furthermore, the same technology can be used to realize innovative inclinometers, as well as smart foundation anchors.
文摘The distributed sensor is proven to be a powerful tool for civil structural and material process monitoring. Brillouin scattering in fiber can be used as point sensors or distributed sensors for measurement of temperature, strain, birefringence and vibration over centimeters (Brillouin grating length) for point sensor or the pulse length for the distributed sensor. Simultaneous strain and temperature measurement with a spatial resolution of 20 cm is demonstrated in a Panda fiber using Brillouin grating technique with the temperature accuracy and strain accuracy of 0.4 ℃ and 9 με. This technique can also be used for distributed birefringence measurement. For Brillouin optical time domain analysis (BOTDA), we have developed a new technique to measure differential Brillouin gain instead of Brillouin gain itself. This technique allows high precision temperature and strain measurement over long sensing length with sub-meter spatial resolution: 50-cm spatial resolution for 50-km length, using return-to-zero coded optical pulses of BOTDA with the temperature resolution of 0.7 ℃, which is equivalent to strain accuracy of 12 με. For over 50-km sensing length, we proposed and demonstrated frequency-division-multiplexing (FDM) and time-division-multiplexing (TDM) based BOTDA technique for 75-km and 100-km sensing length without inline amplification within the sensing length. The spatial resolution of 2m (100km) and Brillouin frequency shift accuracy of 1.5 MHz have been obtained for TDM based BOTDA and 1-m resolution (75 km) with Brillouin frequency shift accuracy of 1 MHz using FDM based BOTDA. The civil structural health monitoring with BOTDA technique has been demonstrated.
文摘In this study, a hybrid algorithm combining genetic algorithm (GA) with back propagation (BP) neural network (GA-BP) was proposed for extracting the characteristics of multi-peak Brillouin scattering spectrum. Simulations and experimental results show that the GA-BP hybrid algorithm can accurately identify the position and amount of peaks in multi-peak Brillouin scattering spectrum. Moreover, the proposed algorithm obtains a fitting degree of 0.9923 and a mean square error of 0.0094. Therefore, the GA-BP hybrid algorithm possesses a good fitting precision and is suitable for extracting the characteristics of multi-peak Brillouin scattering spectrum.
基金This work was supported by National Basic Research Program of China(973 Program)under Grant No.2010CB327803 and National Natural Science Foundation of China(61027617).
文摘Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technology in Nanjing University are reviewed.The key technologies to make BOFS with ultra-long distance,high spatial resolution,and fast measuring speed are discussed and realized.
基金supported by the National Natural Science Foundation of China (Grant No. 62175072, No. 62175072 and No. 12074209)the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202008)support from International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program)。
文摘The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium.Here,we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid.We calculated the transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Brillouin edge signal through filtered double-edge data.We built a detection system to test the performance of this method and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical prediction.The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less than 4.3 MHz and 3.2 MHz,respectively.Moreover,based on the double-edge technique,the accuracy of the extracted temperatures and salinity is approximately 0.1°C and 0.5‰,respectively,indicating significant potential for application in water detection and oceanography.
基金This work was funded by the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2017YFF0108700).
文摘This paper reviews the recent advances on the high-performance distributed Brillouin optical fiber sensing, which include the conventional distributed Brillouin optical fiber sensing based on backward stimulated Brillouin scattering and two other novel distributed sensing mechanisms based on Brillouin dynamic grating and forward stimulated Brillouin scattering, respectively. As for the conventional distributed Brillouin optical fiber sensing, the spatial resolution has been improved from meter to centimeter in the time-domain scheme and to millimeter in the correlation-domain scheme, respectively;the measurement time has been reduced from minute to millisecond and even to microsecond;the sensing range has reached more than 100 km. Brillouin dynamic grating can be used to measure the birefringence of a polarization-maintaining fiber, which has been explored to realize distributed measurement of temperature, strain, salinity, static pressure, and transverse pressure. More recently, forward stimulated Brillouin scattering has gained considerable interest because of its capacity to detect mechanical features of materials surrounding the optical fiber, and remarkable works using ingenious schemes have managed to realize distributed measurement, which opens a brand-new way to achieve position-resolved substance identification.
基金supported by the International Cooperation Projects between China and Singapore under Grant No.2009DFA12640
文摘The Brillouin gain properties in a double-clad As2Se3 photonic crystal fiber(PCF)are simulated based on the finite-element method(FEM).The results indicate that the Brillouin gain spectrum(BGS)of our proposed chalcogenide PCF exhibits a multipeaked behavior and has a high Brillouin gain coefficient.We also find that a larger size of inner cladding air holes will lead to a more pronounced second peak in the BGS.On the other hand,the size of the outer cladding has nearly no effect on the BGS behavior.Through these results,one can tailor the Stimulated Brillouin scattering effect in PCFs for a wide range of applications.
基金Poject supported by the National Natural Science Foundation of China(Grant Nos.62175116 and 62311530343)the Postgraduate Research Innovation Program of Jiangsu Province,China(Grant No.KYCX22_0913)。
文摘A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.
基金supported by the National Natural Science Foundation of China(No.61377088)the Natural Science Foundation of Hebei Province of China(Nos.E2015502053 and F2014502098)
文摘The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA041203)the National Natural Science Foundation of China(Grant Nos.61377062 and 31201377)+1 种基金the Program of Shanghai Excellent Technical Leaders,China(Grant No.13XD1425400)the Doctorial Fund of Zhengzhou University of Light Industry,China(Grant No.2013BSJJ012)
文摘The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement.
基金This work was supported by the National Key Scientific Instrument and Equipment Development Project of China(2017YFF0108700)National Natural Science Foundation of China(61975045)The authors would like to express our gratitude to Long Wang,Chao Pang and Yabo Feng for their help in the experiment.
文摘The phase-sensitive optical time-domain reflectometry(φ-OTDR)is a good candidate for distributed dynamic strain sensing,due to its high sensitivity and fast measurement,which has already been widely used in intrusion monitoring,geophysical exploration,etc.For the frequency scanning basedφ-OTDR,the phase change manifests itself as a shift of the intensity distribution.The correlation between the reference and measured spectra is employed for relative strain demodulation,which has imposed the continuous measurement for the absolute strain demodulation.Fortunately,the Brillouin optical time domain analysis(BOTDA)allows for the absolute strain demodulation with only one measurement.In this work,the combination of theφ-OTDR and BOTDA has been proposed and demonstrated by using the same set of frequency-scanning optical pulses,and the frequency-agile technique is also introduced for fast measurements.A 9.9 Hz vibration with a strain range of 500 nεhas been measured under two different absolute strains(296.7μεand 554.8με)by integrating the Rayleigh and Brillouin information.The sub-micro strain vibration is demonstrated by theφ-OTDR signal with a high sensitivity of 6.8 nε,while the absolute strain is measured by the BOTDA signal with an accuracy of 5.4με.The proposed sensor allows for dynamic absolute strain measurements with a high sensitivity,thus opening a door for new possibilities which are yet to be explored.
文摘A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrate
基金This work is supported by the National Nature Science Foundation of China (NSFC) under grants (61290312 and 61205048), the PCSIRT (IRT1218), and the 111 Project (B14039).
文摘A hybrid phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) system which can realize simultaneous measurement of both dynamic vibration and static strain is proposed. Because the Rayleigh scattering light and spontaneous Brilliouin scattering light are naturally frequency-multiplexed, the heterodyne asynchronous demodulation of frequency shift keying (FSK) in optical fiber communications is utilized, and the demodulations of the two scattering signals are synchronized. In addition, the forward Raman amplification is introduced to the system, which not only makes up for the deficiency of spontaneous BriUiouin scattering based distributed fiber sensor, but also has the merit of the single end measurement of B-OTDR. The designed φ/B-OTDR hybrid system has the sensing range of 49km with 10m spatial resolution. The vibration and strain experiments show that this hybrid system has great potential for use in long-distance structural health monitoring.
基金the National High Technology Research and Development Program of China(Grant No.2012AA041203)the Science and Technology Commission of Shanghai Municipality,China(Grant No.13XD1425400)the Pudong New Area Science and Technology Development Fund,China(Grant No.PKJ2012-D04)
文摘The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewidth of spontaneous Brillouin scattering remains almost constant when the laser linewidth is less than 1 MHz at the same pulse width; otherwise, it increases sharply. A comparison between a fiber laser (FL) with 4-kHz linewidth at 3 dB and a distributed feedback (DFB) laser with 3-MHz linewidth is made experimentally. When a constant laser power is launched into the sensing fiber, the fitting linewidths of the beat signals (backscattered Brillouin light and local oscillator (LO)) is about 5 MHz wider for the DFB laser than for the FL and the intensity of the beat signal is about a half. Furthermore, the frequency fluctuation in the long sensing fiber is lower for the FL source, yielding about 2 MHz less than that of the DFB laser, indicating higher temperature/strain resolution. The experimental results are in good agreement with the numerical simulations.