This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressibl...This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressible Navier-Stokes and energy equations to analyze the dynamic thermal response of walls exposed to real thermal excitations of the Marrakesh climate.The results show that increasing the emissivity from 0.1 to 0.9 significantly increases the total heat load over 24 h.Furthermore,filling 100% of the cavities with insulation materials delayed the temperature peak by about 2.3 h and lowered the decrement factor by roughly 43%,with a value smaller than 0.07.In addition,it is demonstrated that the total thermal load is reduced by approximately 28% for improved wall configurations(100% insulation filling cavities)compared to traditional wall configurations(100% air filling cavities),which aids in improving building energy efficiency.展开更多
In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings...In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.展开更多
The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with br...The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with brick, glass, stone, and gypsum are taken into account to study the difference in temperature of the indoor and outdoor environments. Also, this paper explores the heat conducted by walls of different materials with different thicknesses. In addition, survey is conducted among the residents of Jeddah to know their perspective about thermal comfort of buildings. From the study, it is found that building envelope constructed with glass is more effective compared to envelope constructed with other materials of with least thickness of wall. Also, it is found that the envelope constructed with brick is more effective in absorbing the heat provided the thickness of the walls remains the same.展开更多
文摘This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressible Navier-Stokes and energy equations to analyze the dynamic thermal response of walls exposed to real thermal excitations of the Marrakesh climate.The results show that increasing the emissivity from 0.1 to 0.9 significantly increases the total heat load over 24 h.Furthermore,filling 100% of the cavities with insulation materials delayed the temperature peak by about 2.3 h and lowered the decrement factor by roughly 43%,with a value smaller than 0.07.In addition,it is demonstrated that the total thermal load is reduced by approximately 28% for improved wall configurations(100% insulation filling cavities)compared to traditional wall configurations(100% air filling cavities),which aids in improving building energy efficiency.
基金sponsored by the National Science & Technology Pillar Programme of the Ministry of Science and Technology of China (Grant No. 2014BAL05B01)National Natural Science Foundation of China (Grant No. 51708420)+3 种基金Shanghai Pujiang Program (Grant No. 17PJ1409100)Natural Science Foundation of Shanghai (Grant No. 17ZR1432300)the Fundamental Research Funds for the Central Universities (Grant No. 2016KJ024)the Shanghai Peak Discipline Program for Higher Education Institutions (Class I)-Civil Engineering
文摘In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.
文摘The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with brick, glass, stone, and gypsum are taken into account to study the difference in temperature of the indoor and outdoor environments. Also, this paper explores the heat conducted by walls of different materials with different thicknesses. In addition, survey is conducted among the residents of Jeddah to know their perspective about thermal comfort of buildings. From the study, it is found that building envelope constructed with glass is more effective compared to envelope constructed with other materials of with least thickness of wall. Also, it is found that the envelope constructed with brick is more effective in absorbing the heat provided the thickness of the walls remains the same.