期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测
被引量:
9
1
作者
李庆旭
王巧华
+2 位作者
马美湖
肖仕杰
施行
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第6期1800-1805,共6页
胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。...
胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。该文以种鸭蛋为研究对象,为了在种鸭蛋孵化早期实现对种蛋的雌雄识别,构建了可见/近红外透射光谱信息采集系统,在200~1100 nm的波长范围内采集了345枚孵化了0~8 d的种鸭蛋光谱数据。搭建了适用于种鸭蛋光谱信息的6层卷积神经网络(convolutional neural network,CNN),其中包括输入层、3个卷积层、全连接层与输出分类层。卷积层可以提取光谱中的有效信息,全连接层通过对卷积层提取的局部特征进行整合供输出层分类决策。另外在卷积神经网络中引入局部响应归一化和dropout操作能够加快网络的收敛速度。利用该卷积神经网络构建鸭胚雌雄信息识别网络,通过对比与分析不同孵化天数的识别效果,发现孵化7d的识别效果最佳。随后将孵化7 d的种鸭蛋原始光谱数据进行噪声去除,选取500~900 nm波段用于后续的特征波长选取和建模。分别运用了竞争性自适应重加权算法(CARS)、连续投影算法(SPA)与遗传算法(GA)选择能够区分鸭胚性别的波长点,将选取的特征波长转换为二维的光谱信息矩阵,二维光谱信息矩阵保留了一维光谱的有效信息,同时极大地方便了与卷积神经网络的结合。利用二维光谱信息矩阵和卷积神经网络相结合,实现孵化早期阶段鸭胚的雌雄识别。经检验,基于SPA算法和CNN网络建立的模型效果较佳,其中训练集、开发集及测试集的准确率分别为93.36%,93.12%和93.83%;基于GA算法和CNN网络建立的模型效果次之,训练集、开发集及测试集的准确率分别为90.87%,93.12%和86.42%;基于CARS算法和CNN网络建立的模型的训练集、开发集及
展开更多
关键词
种鸭蛋
雌雄
卷积神经网络
无损检测
可见/近红外光谱
下载PDF
职称材料
题名
基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测
被引量:
9
1
作者
李庆旭
王巧华
马美湖
肖仕杰
施行
机构
华中农业大学工学院
农业部长江中下游农业装备重点实验室
国家蛋品加工技术研发中心
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第6期1800-1805,共6页
基金
国家自然科学基金项目(31871863)
国家科技支撑计划项目(2015BAD19B05)
公益性行业(农业)科研专项(201303084)资助。
文摘
胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。该文以种鸭蛋为研究对象,为了在种鸭蛋孵化早期实现对种蛋的雌雄识别,构建了可见/近红外透射光谱信息采集系统,在200~1100 nm的波长范围内采集了345枚孵化了0~8 d的种鸭蛋光谱数据。搭建了适用于种鸭蛋光谱信息的6层卷积神经网络(convolutional neural network,CNN),其中包括输入层、3个卷积层、全连接层与输出分类层。卷积层可以提取光谱中的有效信息,全连接层通过对卷积层提取的局部特征进行整合供输出层分类决策。另外在卷积神经网络中引入局部响应归一化和dropout操作能够加快网络的收敛速度。利用该卷积神经网络构建鸭胚雌雄信息识别网络,通过对比与分析不同孵化天数的识别效果,发现孵化7d的识别效果最佳。随后将孵化7 d的种鸭蛋原始光谱数据进行噪声去除,选取500~900 nm波段用于后续的特征波长选取和建模。分别运用了竞争性自适应重加权算法(CARS)、连续投影算法(SPA)与遗传算法(GA)选择能够区分鸭胚性别的波长点,将选取的特征波长转换为二维的光谱信息矩阵,二维光谱信息矩阵保留了一维光谱的有效信息,同时极大地方便了与卷积神经网络的结合。利用二维光谱信息矩阵和卷积神经网络相结合,实现孵化早期阶段鸭胚的雌雄识别。经检验,基于SPA算法和CNN网络建立的模型效果较佳,其中训练集、开发集及测试集的准确率分别为93.36%,93.12%和93.83%;基于GA算法和CNN网络建立的模型效果次之,训练集、开发集及测试集的准确率分别为90.87%,93.12%和86.42%;基于CARS算法和CNN网络建立的模型的训练集、开发集及
关键词
种鸭蛋
雌雄
卷积神经网络
无损检测
可见/近红外光谱
Keywords
breeding
duck
eggs
Male
and
female
Convolutional
neural
network
Nondestructive
testing
Visible/near
infrared
spectroscopy
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测
李庆旭
王巧华
马美湖
肖仕杰
施行
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部