期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测 被引量:9
1
作者 李庆旭 王巧华 +2 位作者 马美湖 肖仕杰 施行 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第6期1800-1805,共6页
胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。... 胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。该文以种鸭蛋为研究对象,为了在种鸭蛋孵化早期实现对种蛋的雌雄识别,构建了可见/近红外透射光谱信息采集系统,在200~1100 nm的波长范围内采集了345枚孵化了0~8 d的种鸭蛋光谱数据。搭建了适用于种鸭蛋光谱信息的6层卷积神经网络(convolutional neural network,CNN),其中包括输入层、3个卷积层、全连接层与输出分类层。卷积层可以提取光谱中的有效信息,全连接层通过对卷积层提取的局部特征进行整合供输出层分类决策。另外在卷积神经网络中引入局部响应归一化和dropout操作能够加快网络的收敛速度。利用该卷积神经网络构建鸭胚雌雄信息识别网络,通过对比与分析不同孵化天数的识别效果,发现孵化7d的识别效果最佳。随后将孵化7 d的种鸭蛋原始光谱数据进行噪声去除,选取500~900 nm波段用于后续的特征波长选取和建模。分别运用了竞争性自适应重加权算法(CARS)、连续投影算法(SPA)与遗传算法(GA)选择能够区分鸭胚性别的波长点,将选取的特征波长转换为二维的光谱信息矩阵,二维光谱信息矩阵保留了一维光谱的有效信息,同时极大地方便了与卷积神经网络的结合。利用二维光谱信息矩阵和卷积神经网络相结合,实现孵化早期阶段鸭胚的雌雄识别。经检验,基于SPA算法和CNN网络建立的模型效果较佳,其中训练集、开发集及测试集的准确率分别为93.36%,93.12%和93.83%;基于GA算法和CNN网络建立的模型效果次之,训练集、开发集及测试集的准确率分别为90.87%,93.12%和86.42%;基于CARS算法和CNN网络建立的模型的训练集、开发集及 展开更多
关键词 种鸭蛋 雌雄 卷积神经网络 无损检测 可见/近红外光谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部