The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of A8 content on the microstructure and properties were analyzed by means of optical microscopy, sca...The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of A8 content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag- Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of A8 content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.展开更多
基金supported by the National Natural Science Foundation of China (No. 50805038)Program for New Century Excellent Talents in University
文摘The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of A8 content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag- Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of A8 content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.