为防止飞机在全电差动刹车纠偏过程中发生危险或事故,将该过程的安全问题视为一个控制问题,从控制的角度开展STAMP/STPA安全性分析.首先,基于系统理论事故模型及过程(system-theoretic accident model and process,STAMP)建立考虑人机...为防止飞机在全电差动刹车纠偏过程中发生危险或事故,将该过程的安全问题视为一个控制问题,从控制的角度开展STAMP/STPA安全性分析.首先,基于系统理论事故模型及过程(system-theoretic accident model and process,STAMP)建立考虑人机协调的飞机全电差动刹车系统STAMP模型,确定整个差动刹车系统的控制反馈关系;然后,采用系统理论过程分析(system theoretic process analysis,STPA)方法对差动刹车纠偏过程进行安全性分析,确定系统级事故和危险,识别潜在风险和不安全控制行为(unsafe control action,UCA),从控制、反馈和协调3个方面对不安全控制行为进行定性致因分析;最后,建立飞机地面滑跑模型,对纠偏过程中出现的部分不安全控制行为(UCA1、UCA2和UCA5)进行仿真分析.仿真结果表明:在1°初始偏航角或1 m/s持续侧风的情况下未提供差动刹车动作,飞机在5 s后会偏出跑道;在1°初始偏航角(无侧风)情况下发生差动刹车动作延迟,延迟大于5 s时飞机会偏出跑道.仿真结果从定量角度对飞机全电差动刹车纠偏过程提出了安全约束,并验证了STAMP/STPA方法的有效性.展开更多
Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for tr...Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.展开更多
Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for...Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.展开更多
文摘为防止飞机在全电差动刹车纠偏过程中发生危险或事故,将该过程的安全问题视为一个控制问题,从控制的角度开展STAMP/STPA安全性分析.首先,基于系统理论事故模型及过程(system-theoretic accident model and process,STAMP)建立考虑人机协调的飞机全电差动刹车系统STAMP模型,确定整个差动刹车系统的控制反馈关系;然后,采用系统理论过程分析(system theoretic process analysis,STPA)方法对差动刹车纠偏过程进行安全性分析,确定系统级事故和危险,识别潜在风险和不安全控制行为(unsafe control action,UCA),从控制、反馈和协调3个方面对不安全控制行为进行定性致因分析;最后,建立飞机地面滑跑模型,对纠偏过程中出现的部分不安全控制行为(UCA1、UCA2和UCA5)进行仿真分析.仿真结果表明:在1°初始偏航角或1 m/s持续侧风的情况下未提供差动刹车动作,飞机在5 s后会偏出跑道;在1°初始偏航角(无侧风)情况下发生差动刹车动作延迟,延迟大于5 s时飞机会偏出跑道.仿真结果从定量角度对飞机全电差动刹车纠偏过程提出了安全约束,并验证了STAMP/STPA方法的有效性.
文摘Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.
基金supported by the National Natural Science Foundation of China [No.U1334206]the National Key R&D Program of China [No.2016YFB1200500]
文摘Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.