为高效求解扩展型Boussinesq水波方程,建立了基于有限差分和有限体积方法的混合数值格式。将一维控制方程写为守恒形式,方程中通量部分采用有限体积方法求解,剩余部分采用有限差分方法求解。其中,有限体积方法采用Godunov类高分辨率格式...为高效求解扩展型Boussinesq水波方程,建立了基于有限差分和有限体积方法的混合数值格式。将一维控制方程写为守恒形式,方程中通量部分采用有限体积方法求解,剩余部分采用有限差分方法求解。其中,有限体积方法采用Godunov类高分辨率格式,并结合HLL(Harten-Lax and van Leer)式黎曼问题近似解求界面数值通量,黎曼问题界面左右变量通过高精度状态插值方法(MUSCL)构筑。有限差分方法则采用具有二阶精度的中心差分公式进行。采用具有TVD(Total Variation Diminishing)性质的三阶龙格-库塔多步积分法进行时间积分。对数值模式进行了验证,数值结果同解析解或实验数据吻合良好。展开更多
文摘为高效求解扩展型Boussinesq水波方程,建立了基于有限差分和有限体积方法的混合数值格式。将一维控制方程写为守恒形式,方程中通量部分采用有限体积方法求解,剩余部分采用有限差分方法求解。其中,有限体积方法采用Godunov类高分辨率格式,并结合HLL(Harten-Lax and van Leer)式黎曼问题近似解求界面数值通量,黎曼问题界面左右变量通过高精度状态插值方法(MUSCL)构筑。有限差分方法则采用具有二阶精度的中心差分公式进行。采用具有TVD(Total Variation Diminishing)性质的三阶龙格-库塔多步积分法进行时间积分。对数值模式进行了验证,数值结果同解析解或实验数据吻合良好。