Bosten Lake is the largest inland freshwater lake in China, functioning as a critical control and allocation facility for agricultural, industrial, ecological and social development in southern Xinjiang in northwester...Bosten Lake is the largest inland freshwater lake in China, functioning as a critical control and allocation facility for agricultural, industrial, ecological and social development in southern Xinjiang in northwestern China. The distribution of stable isotopes, spatial and temporal variations of δ<sup>18</sup>O, and hydrograph separation of Bosten Lake and its principal recharge rivers—the Kaidu River and the Huangshuigou River—were analyzed using isotope composition. Hydrograph separation indicated that Bosten lake water comprised four components as follows: river runoff, groundwater, agricultural and industrial drainage, and local precipitation. Their contributions were 31%, 35%, 25%, and 9%, respectively. Irrigation drainage and industrial wastewater, enriched high TDS, were the main factors affecting the water quality of Bosten Lake. The δ<sup>18</sup>O of lake water, which was significantly reduced compared with river water, remained below the local meteoric water line (LMWL), indicating strong evaporation in the lake, especially during summer. The spatial and temporal distribution of δ<sup>18</sup>O exhibited slow water circulation in the lake. Both the Kaidu River and the Huangshuigou River depend on alpine precipitation and glacier snow, especially the Kaidu River, where ice-snow-melt water accounts for 43% of the river runoff. These rivers are sensitive to climate change. The Bosten Lake inflows would be reduced by the decrease in river runoff and groundwater under future climate change. To improve water quality and reduce evaporative loss, the amount of wastewater should be strictly restricted by local government, and water diversions from Bosten Lake should be concentrated between May and September.展开更多
文摘Bosten Lake is the largest inland freshwater lake in China, functioning as a critical control and allocation facility for agricultural, industrial, ecological and social development in southern Xinjiang in northwestern China. The distribution of stable isotopes, spatial and temporal variations of δ<sup>18</sup>O, and hydrograph separation of Bosten Lake and its principal recharge rivers—the Kaidu River and the Huangshuigou River—were analyzed using isotope composition. Hydrograph separation indicated that Bosten lake water comprised four components as follows: river runoff, groundwater, agricultural and industrial drainage, and local precipitation. Their contributions were 31%, 35%, 25%, and 9%, respectively. Irrigation drainage and industrial wastewater, enriched high TDS, were the main factors affecting the water quality of Bosten Lake. The δ<sup>18</sup>O of lake water, which was significantly reduced compared with river water, remained below the local meteoric water line (LMWL), indicating strong evaporation in the lake, especially during summer. The spatial and temporal distribution of δ<sup>18</sup>O exhibited slow water circulation in the lake. Both the Kaidu River and the Huangshuigou River depend on alpine precipitation and glacier snow, especially the Kaidu River, where ice-snow-melt water accounts for 43% of the river runoff. These rivers are sensitive to climate change. The Bosten Lake inflows would be reduced by the decrease in river runoff and groundwater under future climate change. To improve water quality and reduce evaporative loss, the amount of wastewater should be strictly restricted by local government, and water diversions from Bosten Lake should be concentrated between May and September.