By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at ...By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.展开更多
In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam...In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.展开更多
Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is...Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC-OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC-SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC-OA are 1103 m2·g^-1 and 0.921 cm3·g^-1, respectively. At a current density of 0.1 A·g^-1, the specific capacitance of BNC-OA is 335 F·g^-1 and the capacitance retention can still reach 83% at 1 A·g^-1. The analysis shows that the superior electrochemical performance of the BNC-OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.展开更多
Interleukin 2 (IL-2) is widely used as an active immunotherapeutic agent in clinical metastatic cancers. However, its therapeutic concentrations do not last long due to its short half-life. Thus, only a transient prol...Interleukin 2 (IL-2) is widely used as an active immunotherapeutic agent in clinical metastatic cancers. However, its therapeutic concentrations do not last long due to its short half-life. Thus, only a transient proliferation of the anti-cancer CD8+ T cells can be achieved, resulting in poor efficacy. Therefore, the aim of this work was to create a system that promotes CD8+ T cell proliferation at the tumor site using IL-2 persistently present and activates an anti-cancer immune response. This goal was achieved by the design of the IL-2-loaded polypeptide nanoparticles (P-IL-2) where methoxy poly(ethylene glycol) block poly-[(N-2-hydroxyethyl)-aspartamide] phenylboronic acid was used to encapsulate IL-2 through boron-nitrogen coordination with poly(L-lysine). P-IL-2 significantly prolonged the circulation time of IL-2 and achieved a selective drug release at the tumor site in the presence of high levels of reactive oxygen species, thus activating an anti-cancer immune response and exerting a better anti-cancer effect. The half-life of P-IL-2 was 3.15-fold higher than that of IL-2, and the quantity of CD8+ T cells after using P-IL-2 was 1.89-fold higher than that after using IL-2. In addition, the combination of P-IL-2 and anti-CTLA-4 monoclonal antibody resulted in an enhanced immune activation. Hence, this work provides a new approach to improve the efficacy of IL-2 in anti-cancer immunotherapy.展开更多
Emitters with narrowband spectra are of great importance nowadays because of the growing demand for ultra-high-definition displays in the fields of panel displays and solid-state lighting.Though the reported multiple ...Emitters with narrowband spectra are of great importance nowadays because of the growing demand for ultra-high-definition displays in the fields of panel displays and solid-state lighting.Though the reported multiple resonance(MR)emitters have been widely studied with extremely sharp spectra and color-tunable emissions,the electrophilic borylation synthetic strategies and stable narrowband blue devices still face great challenges.展开更多
A tung oil-based boron-nitrogen coordination polymer(TWE-BN)was specially designed and synthesized as a highly efficient water-based lubricant additive,which has been beneficial to both energy conservation and conduci...A tung oil-based boron-nitrogen coordination polymer(TWE-BN)was specially designed and synthesized as a highly efficient water-based lubricant additive,which has been beneficial to both energy conservation and conducive to environmental protection.Its hydrolysis stability and tribological properties in water were investigated.To better research the lubricating properties,and thus to understand the interaction between the surface and the lubricating additives.Herein,both experimental and theoretical computations based on density functional theory(DFT)were performed.The addition of TWE-BN reduces the water friction coefficient and wear scar diameter,and the maximum non-seizure load increased from 93 to 726 N.Moreover,the anti-corrosion ability on copper was classified as 1b level.The stainless-steel surface was analyzed using scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).In hydrolytic stability testing,TWE-BN was better than nitrogen-free tung oil-based lubricant additive(TWE-B)and remained non-hydrolyzed for at least 15 days,implying the feasibility of tung oil-based boron-nitrogen coordination as highly effective and hydrolytic stability lubricant additives.展开更多
Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by the...Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by their drastic volume variation(∼300%)and low electrical conductivity.Here,to tackle the drawbacks,a hierarchical Si anode with double-layer coatings of a SiOx inner layer and a nitrogen(N),boron(B)co-doped carbon(C-NB)outer layer is elaborately designed by copyrolysis of Si-OH structures and a H3BO_(3)-doped polyaniline polymer on the Si surface.Compared with the pristine Si anodes(7mA h g^(−1) at 0.5 A g^(−1) after 340 cycles and 340 mA h g^(−1) at 5 A g^(−1)),the modified Si-based materials(Si@SiOx@C-NB nanospheres)present su perior cycling stability(reversible 1301 mA h g^(−1) at 0.5 A g^(−1) after 340 cycles)as well as excellent rate capability(690mA h g^(−1) at 5 A g^(−1))when used as anodes in LIBs.The unique double-layer coating structure,in which the inner amorphous SiOx layer acts as a buffer matrix and the outer defect-rich carbon enhances the electron diffusion of the whole anode,makes it possible to de liver excellent electrochemical properties.These results indicate that our double-layer coating strategy is a promising approach not only for the devel opment of sustainable Si anodes but also for the design of multielement-doped carbon nanomaterials.展开更多
The eccentric connectivity index and connective eccentricity index are important topological indices for chemistry. In this paper, we investigate the eccentric connectivity index and connective eccentricity index of b...The eccentric connectivity index and connective eccentricity index are important topological indices for chemistry. In this paper, we investigate the eccentric connectivity index and connective eccentricity index of boron-nitrogen fullerenes, respectively. And we give computing formulas of eccentric connectivity index and connective eccentricity index of all boron-nitrogen fullerenes with regular structure.展开更多
The development of new polymer acceptors strongly paves the power conversion efficiency(PCE)improvement of all polymer solar cells(all-PSCs).Herein,we develop a new polymer acceptor PBN26,which is the alternating copo...The development of new polymer acceptors strongly paves the power conversion efficiency(PCE)improvement of all polymer solar cells(all-PSCs).Herein,we develop a new polymer acceptor PBN26,which is the alternating copolymer of 2,2′-((2Z,2′Z)-((12,13-bis(2-octyldodecyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile and B←N bridged thienylthiazole(BNTT).The optimized all-PSCs device based on PBN26 exhibits a PCE of 15.09%,which is the highest value of the all-PSCs based on B←N-based polymer acceptors at present.Moreover,we also fabricate an all-PSC module with active area of 10 cm2 by blade coating,which exhibits a PCE of 8.78%.These results prove that polymer acceptors containing B←N units are promising for all-PSC device applications.展开更多
Main observation and conclusion By combination of two special structural units,a boron-nitrogen-fused polycyclic aromatic hydrocarbon and azulene with strong intramolecular dipoles,a novel BN aromatics,BN-Az,has been ...Main observation and conclusion By combination of two special structural units,a boron-nitrogen-fused polycyclic aromatic hydrocarbon and azulene with strong intramolecular dipoles,a novel BN aromatics,BN-Az,has been designed and synthesized with unique characteristics.The structure,optical and electrochemical properties,as well as charge transport property of BN-Az have been investigated.Notably,BN-Az selectively responds to fluoride ions and protons with a significant color change,which could also be monitored by NMR spectra and single-crystal X-ray analysis,indicating its potential as an effective ion sensing material in stimuli-responsive electronic devices.展开更多
基金supported by the Science and Technology Program of Hunan Province,China (Grant No.2010DFJ411)the Natural Science Foundation of Hunan Province,China (Grant No.11JJ4001)the Fundamental Research Funds for the Central Universities,China (Grant No.201012200053)
文摘By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.
基金the financial support from the National Natural Science Foundation of China (52002356)the China Postdoctoral Science Foundation (2020M672269)the National Key R&D program of China (2019YFA0706802)
文摘In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.21276045)
文摘Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC-OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC-SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC-OA are 1103 m2·g^-1 and 0.921 cm3·g^-1, respectively. At a current density of 0.1 A·g^-1, the specific capacitance of BNC-OA is 335 F·g^-1 and the capacitance retention can still reach 83% at 1 A·g^-1. The analysis shows that the superior electrochemical performance of the BNC-OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.
基金supported by the National Natural Science Foundation of China(Nos.52025035,51873206 and 52203198)the Project of Health research talents Project of Jilin Province(No.2020SCZ06)+1 种基金the Project of Jilin Province Development and Reform Commission(No.2021C043-6)the Jilin Provincial International Cooperation Key Laboratory of Biomedical Polymers(No.20210504001GH).
文摘Interleukin 2 (IL-2) is widely used as an active immunotherapeutic agent in clinical metastatic cancers. However, its therapeutic concentrations do not last long due to its short half-life. Thus, only a transient proliferation of the anti-cancer CD8+ T cells can be achieved, resulting in poor efficacy. Therefore, the aim of this work was to create a system that promotes CD8+ T cell proliferation at the tumor site using IL-2 persistently present and activates an anti-cancer immune response. This goal was achieved by the design of the IL-2-loaded polypeptide nanoparticles (P-IL-2) where methoxy poly(ethylene glycol) block poly-[(N-2-hydroxyethyl)-aspartamide] phenylboronic acid was used to encapsulate IL-2 through boron-nitrogen coordination with poly(L-lysine). P-IL-2 significantly prolonged the circulation time of IL-2 and achieved a selective drug release at the tumor site in the presence of high levels of reactive oxygen species, thus activating an anti-cancer immune response and exerting a better anti-cancer effect. The half-life of P-IL-2 was 3.15-fold higher than that of IL-2, and the quantity of CD8+ T cells after using P-IL-2 was 1.89-fold higher than that after using IL-2. In addition, the combination of P-IL-2 and anti-CTLA-4 monoclonal antibody resulted in an enhanced immune activation. Hence, this work provides a new approach to improve the efficacy of IL-2 in anti-cancer immunotherapy.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51903137,22135004 and 61890942)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120041).
文摘Emitters with narrowband spectra are of great importance nowadays because of the growing demand for ultra-high-definition displays in the fields of panel displays and solid-state lighting.Though the reported multiple resonance(MR)emitters have been widely studied with extremely sharp spectra and color-tunable emissions,the electrophilic borylation synthetic strategies and stable narrowband blue devices still face great challenges.
基金supported by Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes[No.CAFYBB2019SY037]and National Natural Science Foundation of China[No.31901260].
文摘A tung oil-based boron-nitrogen coordination polymer(TWE-BN)was specially designed and synthesized as a highly efficient water-based lubricant additive,which has been beneficial to both energy conservation and conducive to environmental protection.Its hydrolysis stability and tribological properties in water were investigated.To better research the lubricating properties,and thus to understand the interaction between the surface and the lubricating additives.Herein,both experimental and theoretical computations based on density functional theory(DFT)were performed.The addition of TWE-BN reduces the water friction coefficient and wear scar diameter,and the maximum non-seizure load increased from 93 to 726 N.Moreover,the anti-corrosion ability on copper was classified as 1b level.The stainless-steel surface was analyzed using scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).In hydrolytic stability testing,TWE-BN was better than nitrogen-free tung oil-based lubricant additive(TWE-B)and remained non-hydrolyzed for at least 15 days,implying the feasibility of tung oil-based boron-nitrogen coordination as highly effective and hydrolytic stability lubricant additives.
基金supported by Joint Funds of the National Natural Science Foundation of China(U20A20280)the National Natural Science Foundation of China(21805083,52074119)+3 种基金the Academy of Sciences large apparatus United Fund of China(U1832187)the Scientific Research Fund of Hunan Provincial Education Department(19K058)the Science and Technology Planning Project of Hunan Province(2018TP1017)the High-Tech Leading Plan of Hunan Province(2020GK2072).
文摘Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by their drastic volume variation(∼300%)and low electrical conductivity.Here,to tackle the drawbacks,a hierarchical Si anode with double-layer coatings of a SiOx inner layer and a nitrogen(N),boron(B)co-doped carbon(C-NB)outer layer is elaborately designed by copyrolysis of Si-OH structures and a H3BO_(3)-doped polyaniline polymer on the Si surface.Compared with the pristine Si anodes(7mA h g^(−1) at 0.5 A g^(−1) after 340 cycles and 340 mA h g^(−1) at 5 A g^(−1)),the modified Si-based materials(Si@SiOx@C-NB nanospheres)present su perior cycling stability(reversible 1301 mA h g^(−1) at 0.5 A g^(−1) after 340 cycles)as well as excellent rate capability(690mA h g^(−1) at 5 A g^(−1))when used as anodes in LIBs.The unique double-layer coating structure,in which the inner amorphous SiOx layer acts as a buffer matrix and the outer defect-rich carbon enhances the electron diffusion of the whole anode,makes it possible to de liver excellent electrochemical properties.These results indicate that our double-layer coating strategy is a promising approach not only for the devel opment of sustainable Si anodes but also for the design of multielement-doped carbon nanomaterials.
文摘The eccentric connectivity index and connective eccentricity index are important topological indices for chemistry. In this paper, we investigate the eccentric connectivity index and connective eccentricity index of boron-nitrogen fullerenes, respectively. And we give computing formulas of eccentric connectivity index and connective eccentricity index of all boron-nitrogen fullerenes with regular structure.
基金This work was financially supported by the National Key Research and Development Program of China(No.2019YFA0705902)funded by MOSTthe National Natural Science Foundation of China(Nos.21875244 and 22135007).
文摘The development of new polymer acceptors strongly paves the power conversion efficiency(PCE)improvement of all polymer solar cells(all-PSCs).Herein,we develop a new polymer acceptor PBN26,which is the alternating copolymer of 2,2′-((2Z,2′Z)-((12,13-bis(2-octyldodecyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile and B←N bridged thienylthiazole(BNTT).The optimized all-PSCs device based on PBN26 exhibits a PCE of 15.09%,which is the highest value of the all-PSCs based on B←N-based polymer acceptors at present.Moreover,we also fabricate an all-PSC module with active area of 10 cm2 by blade coating,which exhibits a PCE of 8.78%.These results prove that polymer acceptors containing B←N units are promising for all-PSC device applications.
基金This work is supported by the National Key R&D Program of China(No.2017YFA0204701)the National Natural Science Foundation of China(Nos.21722201,21790360).
文摘Main observation and conclusion By combination of two special structural units,a boron-nitrogen-fused polycyclic aromatic hydrocarbon and azulene with strong intramolecular dipoles,a novel BN aromatics,BN-Az,has been designed and synthesized with unique characteristics.The structure,optical and electrochemical properties,as well as charge transport property of BN-Az have been investigated.Notably,BN-Az selectively responds to fluoride ions and protons with a significant color change,which could also be monitored by NMR spectra and single-crystal X-ray analysis,indicating its potential as an effective ion sensing material in stimuli-responsive electronic devices.