In order to enhance the hydrogen storage properties of LiBH4,activated charcoal (AC) was used as the scaffold to confine LiBH4 in this paper.Ball milling was used to prepare LiBH4/AC composites.Experimental results sh...In order to enhance the hydrogen storage properties of LiBH4,activated charcoal (AC) was used as the scaffold to confine LiBH4 in this paper.Ball milling was used to prepare LiBH4/AC composites.Experimental results show that dehydrogenation properties of ball-milled LiBH4/AC (LiBH4/AC-BM) are greatly improved compared with that of pristine LiBH4,ball-milled LiBH4 (LiBH4-BM) and hand-milled LiBH4/AC (LiBH4/AC-HM).The onset dehydrogenation temperature of LiBH4 for LiBH4/AC-BM is around 160 ℃,which is 170 ℃ lower than that of pristine LiBH4.At around 400 ℃,LiBH4/AC-BM finishes the dehydrogenation with a hydrogen capacity of 13.6 wt%,which is approximately the theoretical dehydrogenation capacity of pure LiBH4 (13.8 wt%),while the dehydrogenation processes for LiBH4-BM and LiBH4/AC-BM do not finish even when they were heated to 600 ℃.The isothermal dehydriding measurements show that it takes only 15 min for LiBH4/AC-BM to reach a dehydrogenation capacity of 10.1 wt% at 350 ℃,whereas the pristine LiBH4 and the LiBH4/AC-HM release hydrogen less than 1 wt% under the same conditions.The dehydrogenation process and the effect of AC were discussed.展开更多
High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on...High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on the size of product and conversion rate were studied.The morphologies of copper nanoparticles were characterized by scanning electron microscopy.The results show that the optimum process conditions are as follows:the molar ratio of KBH4 to CuSO4 is 0.75(3:4),concentration of CuSO4 is 0.4 mol/L,reaction temperature is 30℃,and dispersant is n-butyl alcohol.The average particles size of copper powders with spherical shape gained is about 100 nm.展开更多
A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomat...A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/C0304 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm^-2 were obtained at -0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L^-1 NaOH and 0.2 mol·L^-1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B-H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.展开更多
In order to improve the hydrogen storage properties of LiBH4-MgH2 composite, two different kinds of Nb-based catalysts, NbC and NbF5, were added to LiBH4-MgH2 composite by ball milling, and the effect of catalysts on ...In order to improve the hydrogen storage properties of LiBH4-MgH2 composite, two different kinds of Nb-based catalysts, NbC and NbF5, were added to LiBH4-MgH2 composite by ball milling, and the effect of catalysts on hydrogen storage properties of the modified LiBH4-MgH2 system was investigated. The experimental results show that LiBH4-MgH2 composite is a two-step dehydrogenation process, and Nb-based compounds can remarkably enhance its dehydrogenation kinetics. For the composite without addition of catalysts, the starting decomposition temperature for the first dehydrogenation step is around 320℃, and there is a long period of incubation time(around 220 min) for the occurrence of the second decomposition step even at high temperature of 450℃. It needs more than 10 h to complete the decomposition process and release around 9 wt% H2. After addition of 5 mol% NbF5, the starting decomposition temperature for the first dehydrogenation step is around 150℃, there is no incubation time for the second decomposition step, and it takes around 40 min to complete the second step and reaches a total dehydrogenation capacity of 9.5 wt%. NbF5 has better catalytic effect than NbC. Based on the hydrogenation/dehydrogenation behaviors and structural variation, the mechanism of catalytic effect was discussed.展开更多
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolys...Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.展开更多
Composite solid electrolytes(CSEs) containing polymer matrices and inorganic fillers hold promise for the next generation of solid-state batteries.However,the role of residual solvents in CSEs remains controversial.Th...Composite solid electrolytes(CSEs) containing polymer matrices and inorganic fillers hold promise for the next generation of solid-state batteries.However,the role of residual solvents in CSEs remains controversial.This study investigated the evolution and function of the residual solvent in a polymer-Li_2B_(12)H_(12) CSE.A partial reaction occurred between Li_2B_(12)H_(12) and solvent N,N-dimethylformamide(DMF),which produced dimethylaminomethanol(DMAM) in the CSE.Density functional theory calculations have revealed that DMA M forms stronger hydrogen bonds with polyvinylidene fluoride chains than DMF,which can have a plasticizing effect on the polymer matrix,leading to lower crystallinity and quicker segment motion.Therefore,this CSE exhibited improved Li-ion conducting properties,enabling the stable cycling of Li‖LiFePO_(4) solid-state batteries.This study provided insights into the role of residual solvents in CSEs.展开更多
The Li-Mg-B-H composite(2LiBH_(4)+MgH_(2))has a high capacity of 11.4 wt%as a hydrogen storage material.However,the slow kinetics and poor cycling stability severely restrict its practical applications.In this work,a ...The Li-Mg-B-H composite(2LiBH_(4)+MgH_(2))has a high capacity of 11.4 wt%as a hydrogen storage material.However,the slow kinetics and poor cycling stability severely restrict its practical applications.In this work,a layered Nb_(2)C MXene was first synthesized and then introduced to tailor the kinetics and cycling stability of the Li-Mg-B-H composite.The milled 2LiH+MgB_(2)composites were initially hydrogenated to obtain the 2LiBH_(4)+MgH_(2)composites.The 2LiBH_(4)+MgH_(2)+5wt%Nb_(2)C can release 9.0 wt%H_(2)in 30 min at 400℃,while it is only 2.7 wt%for the undoped 2LiBH_(4)+MgH_(2).The dehydrogenation activation energies of MgH_(2)and LiBH_(4)are 123 and 154 kJ·mol^(-1)respectively for the 5 wt%Nb_(2)C-doped composite,lower than the undoped composite(164 and 165 kJ·mol^(-1)).The 2LiBH_(4)+MgH_(2)+5 wt%Nb_(2)C possesses excellent cycling stability,with the reversible capacity only slightly reduced from 9.4 wt%for the 1st cycle to 9.3 wt%for the 20th cycle.Nb_(2)C keeps stable in the composite and acts as an efficient catalyst for the Li-Mg-B-H composite.It is believed that both the layered structure and the active Nb element contribu te to the enhanced hydrogen storage performances of the Li-Mg-B-H composite.This work confirms that the Nb_(2)C MXene with layered stru cture has a significant enhancing impact on the Li-Mg-B-H hydrogen storage materials,which is different from the bulk NbC.展开更多
In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration...In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration to 0.9 mol·L^(-1),the as-obtained Co-Fe-B@g-C_(3)N_(4)/NF exhibited the twisted ribbon structure with more distinct three-dimensional hierarchy and the smaller particle size,showing the good catalytic property for the hydrolysis of NaBH_(4)solution.The H_(2)generation rate of Co-Fe-B@g-C_(3)N_(4)/NF and binary Co-B@g-C_(3)N_(4)/NF under visible light irradiation surpassed the value under natural condition.The apparent activation energy of Co-Fe-B@g-C_(3)N_(4)/NF(45.0 kJ·mol^(-1))under visible light irradiation was obviously reduced when compared with the natural condition(48.4 kJ·mol^(-1))and binary Co-B@g-C_(3)N_(4)/NF(60.6 kJ·mol^(-1))under visible light irradiation.Furthermore,the catalytic performance of the optimized Co-Fe-B@g-C_(3)N_(4)/NF thin film catalyst was superior to most of the reported non-noble metal and even noble metal catalysts.Hence,it illustrated that the catalytic H_(2)production performance of Co-Fe-B@g-C_(3)N_(4)/NF thin film was distinctly improved after the introduction of light and multicomponent recombination.展开更多
Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)...Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)_3(THF)_3 are isostructural. Each complex contains two η3-BH_4 ligands, an η2-BH_4 ligand and three THF molecules in a distorted octahedron centered about the lanthanide atom. The three B atoms in a complex are coplanar with the lanthanide atom, and the two η3-BH_4 ligands lie opposite to each other.展开更多
The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImB...The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.展开更多
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
Cobalt is commonly admitted as being a promising catalyst in accelerating NaBH4 hydrolysis,being as reactive as noble metals and much more cost-effective.This is the topic of the present paper.Herein,we survey(i) the ...Cobalt is commonly admitted as being a promising catalyst in accelerating NaBH4 hydrolysis,being as reactive as noble metals and much more cost-effective.This is the topic of the present paper.Herein,we survey(i) the NaBH4-devoted literature while especially focusing on the Co catalysts and(ii) our work on the same topic.Finally,we report(iii) reactivity results of newly developed Co-based catalysts.From both surveys,it mainly stands out that Co has been investigated as catalysts in various forms:namely,as chlorides,reduced nanoparticles(metal Co,Co boride,Co-B alloy),supported over supports and shaped.In doing so the reactivity can be easily varied achieving H2 generation rates from few to 】1000 L(H2)/min·g(metal).Nevertheless,our work can be distinguished from the NaBH4 literature.Indeed,we are working on strategies that focus on making alternative Co-based catalysts.One of these strategies is illustrated here as we report new reactivity data of Co-based bimetallic supported catalysts.For example,we show that 20 wt% Co90Y10/γAl2O3-20 wt% Co95Hf5/γAl2O3 】 20 wt% Co99Zr1/γAl2O3 】 20 wt% Co/γAl2O3,the best catalysts showing HGRs of about 245 mL(H2)/min or 123 L(H2) /min·g(metals).展开更多
Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application o...Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.展开更多
LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high...LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high ionic conductivity.However,their applications are hindered by the poor kinetics and reversibility for hydrogen storage and low ionic conductivity at room temperature,respectively.To address these challenges,effective strategies towards engineering the hydrogen storage properties and the emerging solid-state electrolytes with improved performances have been summarized.The focuses are on the state-of-the-art developments of Li/Mg-based borohydrides with a parallel comparison of similar methods ap-plied in both hydrogen storage and solid-state electrolytes,particularly on the phase,structure,and thermal properties changes of Li/Mg-based borohydrides induced by milling,ion substitution,coordination,adding additives/catalysts,and hydrides.The similarities and differences between the strategies towards two kinds of applications are also discussed and prospected.The review will shed light on the future development of Li/Mg-based borohydrides for hydrogen storage and solid-state electrolytes.展开更多
The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the ba...The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the basis of the present X-ray diffraction results and the literature is likely to be a solid solution Na(Cl)x(BH4)(1-x), possessing a cubic Na Cl-type crystalline structure. No presence of any crystalline hydride was detected by powder X-ray diffraction which clearly shows that NaBH4in the initial mixture must have reacted with MnCl2forming a Na Cl-type by-product and another hydride that does not exhibit X-ray Bragg diffraction peaks. Mass spectrometry(MS) of gas released from the ball milled mixture during combined MS/thermogravimetric analysis(TGA)/differential scanning calorimetry(DSC) experiments, confirms mainly hydrogen(H2) with a small quantity of diborane gas, B2H6. The Fourier transform infra-red(FT-IR) spectrum of the ball milled(2NaBH4+ MnCl2) is quite similar to the FT-IR spectrum of crystalline manganese borohydride, c-Mn(BH4)2, synthesized by ball milling, which strongly suggests that the amorphous hydride mechano-chemically synthesized during ball milling could be an amorphous manganese borohydride. Remarkably, the process of solvent filtration and extraction at 42 °C, resulted in the transformation of mechano-chemically synthesized amorphous manganese borohydride to a nanostructured,crystalline, c-Mn(BH4)2hydride.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos. 51471149 and 51171168)the Public Project of Zhejiang Province (No. 2015C31029)
文摘In order to enhance the hydrogen storage properties of LiBH4,activated charcoal (AC) was used as the scaffold to confine LiBH4 in this paper.Ball milling was used to prepare LiBH4/AC composites.Experimental results show that dehydrogenation properties of ball-milled LiBH4/AC (LiBH4/AC-BM) are greatly improved compared with that of pristine LiBH4,ball-milled LiBH4 (LiBH4-BM) and hand-milled LiBH4/AC (LiBH4/AC-HM).The onset dehydrogenation temperature of LiBH4 for LiBH4/AC-BM is around 160 ℃,which is 170 ℃ lower than that of pristine LiBH4.At around 400 ℃,LiBH4/AC-BM finishes the dehydrogenation with a hydrogen capacity of 13.6 wt%,which is approximately the theoretical dehydrogenation capacity of pure LiBH4 (13.8 wt%),while the dehydrogenation processes for LiBH4-BM and LiBH4/AC-BM do not finish even when they were heated to 600 ℃.The isothermal dehydriding measurements show that it takes only 15 min for LiBH4/AC-BM to reach a dehydrogenation capacity of 10.1 wt% at 350 ℃,whereas the pristine LiBH4 and the LiBH4/AC-HM release hydrogen less than 1 wt% under the same conditions.The dehydrogenation process and the effect of AC were discussed.
基金Project(50834003)supported by the National Natural Science Foundation of ChinaProject(09JK561)supported by Educational Commission of Shaanxi Province of China
文摘High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on the size of product and conversion rate were studied.The morphologies of copper nanoparticles were characterized by scanning electron microscopy.The results show that the optimum process conditions are as follows:the molar ratio of KBH4 to CuSO4 is 0.75(3:4),concentration of CuSO4 is 0.4 mol/L,reaction temperature is 30℃,and dispersant is n-butyl alcohol.The average particles size of copper powders with spherical shape gained is about 100 nm.
基金We gratefully acknowledge the financial support of this research by the National Natural Science Foundation of China (No. 51572052), the Natural Science Foundation of Heilongjiang Province of China (No. LC2015004), the China Postdoctoral Science Special Foundation (No. 2015T80329), the Major Project of Science and Technology of Heilongjiang Province (No. GA14A101) and the Project of Research and Development of Applied Technology of Harbin (No. 2014DB4AG016).
文摘A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/C0304 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm^-2 were obtained at -0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L^-1 NaOH and 0.2 mol·L^-1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B-H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.
基金financially supported by the National Natural Science Foundation of China(Nos.51471149 and 51171168)the Public Project of Zhejiang Province(No.2015C31029)
文摘In order to improve the hydrogen storage properties of LiBH4-MgH2 composite, two different kinds of Nb-based catalysts, NbC and NbF5, were added to LiBH4-MgH2 composite by ball milling, and the effect of catalysts on hydrogen storage properties of the modified LiBH4-MgH2 system was investigated. The experimental results show that LiBH4-MgH2 composite is a two-step dehydrogenation process, and Nb-based compounds can remarkably enhance its dehydrogenation kinetics. For the composite without addition of catalysts, the starting decomposition temperature for the first dehydrogenation step is around 320℃, and there is a long period of incubation time(around 220 min) for the occurrence of the second decomposition step even at high temperature of 450℃. It needs more than 10 h to complete the decomposition process and release around 9 wt% H2. After addition of 5 mol% NbF5, the starting decomposition temperature for the first dehydrogenation step is around 150℃, there is no incubation time for the second decomposition step, and it takes around 40 min to complete the second step and reaches a total dehydrogenation capacity of 9.5 wt%. NbF5 has better catalytic effect than NbC. Based on the hydrogenation/dehydrogenation behaviors and structural variation, the mechanism of catalytic effect was discussed.
基金supported by the Key Project of Chinese Ministry of Education (No. 208076)Shandong Provincial Natural Science Foundation,China (No. ZR2010EM069)the Open Project of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology
文摘Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.
基金financially supported by the National Natural Science Foundation of China (Nos.51971146,51971147,52171218 and 52271222)Shanghai Municipal Science and Technology Commission (No.21010503100)+3 种基金the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission (No.2019-01-07-00-07-E00015)Shanghai Outstanding Academic Leaders Plan,Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology,201017-K)Shanghai Rising-Star Program (No.20QA1407100)General Program of Natural Science Foundation of Shanghai (No.20ZR1438400)。
文摘Composite solid electrolytes(CSEs) containing polymer matrices and inorganic fillers hold promise for the next generation of solid-state batteries.However,the role of residual solvents in CSEs remains controversial.This study investigated the evolution and function of the residual solvent in a polymer-Li_2B_(12)H_(12) CSE.A partial reaction occurred between Li_2B_(12)H_(12) and solvent N,N-dimethylformamide(DMF),which produced dimethylaminomethanol(DMAM) in the CSE.Density functional theory calculations have revealed that DMA M forms stronger hydrogen bonds with polyvinylidene fluoride chains than DMF,which can have a plasticizing effect on the polymer matrix,leading to lower crystallinity and quicker segment motion.Therefore,this CSE exhibited improved Li-ion conducting properties,enabling the stable cycling of Li‖LiFePO_(4) solid-state batteries.This study provided insights into the role of residual solvents in CSEs.
基金financially supported by the Science and Technology Department of Guangxi Zhuang Autonomous(No.GuiKeAD21238022)the National Natural Science Foundation of China(Nos.52001079,22379030 and 52261038)Quzhou Science and Technology Project(No.2022K103)。
文摘The Li-Mg-B-H composite(2LiBH_(4)+MgH_(2))has a high capacity of 11.4 wt%as a hydrogen storage material.However,the slow kinetics and poor cycling stability severely restrict its practical applications.In this work,a layered Nb_(2)C MXene was first synthesized and then introduced to tailor the kinetics and cycling stability of the Li-Mg-B-H composite.The milled 2LiH+MgB_(2)composites were initially hydrogenated to obtain the 2LiBH_(4)+MgH_(2)composites.The 2LiBH_(4)+MgH_(2)+5wt%Nb_(2)C can release 9.0 wt%H_(2)in 30 min at 400℃,while it is only 2.7 wt%for the undoped 2LiBH_(4)+MgH_(2).The dehydrogenation activation energies of MgH_(2)and LiBH_(4)are 123 and 154 kJ·mol^(-1)respectively for the 5 wt%Nb_(2)C-doped composite,lower than the undoped composite(164 and 165 kJ·mol^(-1)).The 2LiBH_(4)+MgH_(2)+5 wt%Nb_(2)C possesses excellent cycling stability,with the reversible capacity only slightly reduced from 9.4 wt%for the 1st cycle to 9.3 wt%for the 20th cycle.Nb_(2)C keeps stable in the composite and acts as an efficient catalyst for the Li-Mg-B-H composite.It is believed that both the layered structure and the active Nb element contribu te to the enhanced hydrogen storage performances of the Li-Mg-B-H composite.This work confirms that the Nb_(2)C MXene with layered stru cture has a significant enhancing impact on the Li-Mg-B-H hydrogen storage materials,which is different from the bulk NbC.
基金financially supported by the National Natural Science Foundation of China(No.22075186)the Natural Science Foundation of Liaoning Province(No.2022-MS310)+3 种基金the Scientific Research Fund of Liaoning Provincial Education Department(Nos.JYTZD2023184 and LJKZ0993)the Revitalization Talents Program of Liaoning Province(No.XLYC1907013)the science and technology innovation Program of Hunan Province(No.2023RC4021)the Hundred Talent Program and Major Incubation Project of Shenyang Normal University(No.ZD202003)。
文摘In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration to 0.9 mol·L^(-1),the as-obtained Co-Fe-B@g-C_(3)N_(4)/NF exhibited the twisted ribbon structure with more distinct three-dimensional hierarchy and the smaller particle size,showing the good catalytic property for the hydrolysis of NaBH_(4)solution.The H_(2)generation rate of Co-Fe-B@g-C_(3)N_(4)/NF and binary Co-B@g-C_(3)N_(4)/NF under visible light irradiation surpassed the value under natural condition.The apparent activation energy of Co-Fe-B@g-C_(3)N_(4)/NF(45.0 kJ·mol^(-1))under visible light irradiation was obviously reduced when compared with the natural condition(48.4 kJ·mol^(-1))and binary Co-B@g-C_(3)N_(4)/NF(60.6 kJ·mol^(-1))under visible light irradiation.Furthermore,the catalytic performance of the optimized Co-Fe-B@g-C_(3)N_(4)/NF thin film catalyst was superior to most of the reported non-noble metal and even noble metal catalysts.Hence,it illustrated that the catalytic H_(2)production performance of Co-Fe-B@g-C_(3)N_(4)/NF thin film was distinctly improved after the introduction of light and multicomponent recombination.
文摘Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)_3(THF)_3 are isostructural. Each complex contains two η3-BH_4 ligands, an η2-BH_4 ligand and three THF molecules in a distorted octahedron centered about the lanthanide atom. The three B atoms in a complex are coplanar with the lanthanide atom, and the two η3-BH_4 ligands lie opposite to each other.
文摘The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
文摘Cobalt is commonly admitted as being a promising catalyst in accelerating NaBH4 hydrolysis,being as reactive as noble metals and much more cost-effective.This is the topic of the present paper.Herein,we survey(i) the NaBH4-devoted literature while especially focusing on the Co catalysts and(ii) our work on the same topic.Finally,we report(iii) reactivity results of newly developed Co-based catalysts.From both surveys,it mainly stands out that Co has been investigated as catalysts in various forms:namely,as chlorides,reduced nanoparticles(metal Co,Co boride,Co-B alloy),supported over supports and shaped.In doing so the reactivity can be easily varied achieving H2 generation rates from few to 】1000 L(H2)/min·g(metal).Nevertheless,our work can be distinguished from the NaBH4 literature.Indeed,we are working on strategies that focus on making alternative Co-based catalysts.One of these strategies is illustrated here as we report new reactivity data of Co-based bimetallic supported catalysts.For example,we show that 20 wt% Co90Y10/γAl2O3-20 wt% Co95Hf5/γAl2O3 】 20 wt% Co99Zr1/γAl2O3 】 20 wt% Co/γAl2O3,the best catalysts showing HGRs of about 245 mL(H2)/min or 123 L(H2) /min·g(metals).
基金National Natural Science Foundation of China(No.20336010)National Basic Research Programme of China(No.2003CB716008)
文摘Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.
基金H.S.acknowledges the Guangdong-Hong Kong-Macao Joint Laboratory (Grant No.2019B121205001),Macao Sci-ence and Technology Development Fund (FDCT) (Project No.0098/2020/A2),National Key Research and Development Program (No.2022YFE0206400),Natural Science Foundation of Guang-dong Province (No.2023A1515010765)and FDCT-MOST joint project (Grant No.0026/2022/AMJ)for funding.We also acknowl-edge the support of the National Natural Science Foundation of China (Grant No.52104309)Natural Science Foundation of Hubei Province (No.2021CFB011)+1 种基金“Macao Young Scholars Program”China (No.AM2020004)FDCT Funding Scheme for Postdoctoral Researchers (No.0026/APD/2021).
文摘LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high ionic conductivity.However,their applications are hindered by the poor kinetics and reversibility for hydrogen storage and low ionic conductivity at room temperature,respectively.To address these challenges,effective strategies towards engineering the hydrogen storage properties and the emerging solid-state electrolytes with improved performances have been summarized.The focuses are on the state-of-the-art developments of Li/Mg-based borohydrides with a parallel comparison of similar methods ap-plied in both hydrogen storage and solid-state electrolytes,particularly on the phase,structure,and thermal properties changes of Li/Mg-based borohydrides induced by milling,ion substitution,coordination,adding additives/catalysts,and hydrides.The similarities and differences between the strategies towards two kinds of applications are also discussed and prospected.The review will shed light on the future development of Li/Mg-based borohydrides for hydrogen storage and solid-state electrolytes.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to Prof. R.A. Varin
文摘The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the basis of the present X-ray diffraction results and the literature is likely to be a solid solution Na(Cl)x(BH4)(1-x), possessing a cubic Na Cl-type crystalline structure. No presence of any crystalline hydride was detected by powder X-ray diffraction which clearly shows that NaBH4in the initial mixture must have reacted with MnCl2forming a Na Cl-type by-product and another hydride that does not exhibit X-ray Bragg diffraction peaks. Mass spectrometry(MS) of gas released from the ball milled mixture during combined MS/thermogravimetric analysis(TGA)/differential scanning calorimetry(DSC) experiments, confirms mainly hydrogen(H2) with a small quantity of diborane gas, B2H6. The Fourier transform infra-red(FT-IR) spectrum of the ball milled(2NaBH4+ MnCl2) is quite similar to the FT-IR spectrum of crystalline manganese borohydride, c-Mn(BH4)2, synthesized by ball milling, which strongly suggests that the amorphous hydride mechano-chemically synthesized during ball milling could be an amorphous manganese borohydride. Remarkably, the process of solvent filtration and extraction at 42 °C, resulted in the transformation of mechano-chemically synthesized amorphous manganese borohydride to a nanostructured,crystalline, c-Mn(BH4)2hydride.