Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal c...Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporiza- tion/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric struc- tures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metM-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.展开更多
In nature, many physical phenomena follow the least-action principle, which is also abided by the course of explosive welding of stainless steel/steel. The optimal welding interface can be obtained with the least expl...In nature, many physical phenomena follow the least-action principle, which is also abided by the course of explosive welding of stainless steel/steel. The optimal welding interface can be obtained with the least explosive charge by theoretical analysis and interface test. The bonding energy can be acknowledged as the "action" in explosive welding. To minimize the bonding energy, these rules must be followed such as the lower limit of explosive charge, the upper limit of span and the explosive of critical explosion velocity. The principle of least-action is achieved in the course of explosive welding, and the interface will be optimum.展开更多
基金supported by the National Natural Science Foundation of China(No.21688102,No.21573047and No.21273045)
文摘Binuclear transition metal carbonyl clusters serve as the simplest models in understand- ing metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporiza- tion/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric struc- tures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metM-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.
基金Sponsored by Jiangsu Provincial Foundation of Technology Achievement Transform of China(BA2012030)
文摘In nature, many physical phenomena follow the least-action principle, which is also abided by the course of explosive welding of stainless steel/steel. The optimal welding interface can be obtained with the least explosive charge by theoretical analysis and interface test. The bonding energy can be acknowledged as the "action" in explosive welding. To minimize the bonding energy, these rules must be followed such as the lower limit of explosive charge, the upper limit of span and the explosive of critical explosion velocity. The principle of least-action is achieved in the course of explosive welding, and the interface will be optimum.