The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parame- ters, includi...The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parame- ters, including the parallel-bond tensile strength, parallel-bond cohesion strength, parallel-bond effective modulus, parallel-bond friction angle, and parallel-bond stiffness ratio. These parameters cannot be eas- ily measured in the laboratory or directly related to either measurable or physical material parameters. Hence, a calibration process is required to choose the values to be used in simulations of physical systems. In this study, response surface methodology along with the central composite design approach is used to calibrate BPMs. The sensitivities of the microparameters related to the uniaxial compressive strength (UCS) and elasticity modulus (i.e., the macroscopic responses of the models) are thoroughly scrutinized. Numerical simulations are performed to carefully assess the performance of the model. It is found that the elasticity modulus is highly correlated with the parallel-bond effective modulus. In addition, the parallel- bond tensile and cohesion strengths are the two most significant microparameters with a considerable effect on the UCS. The predicted values determined by the proposed approach are in good agreement with the observed values, which verifies the applicability of the proposed method.展开更多
文摘The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parame- ters, including the parallel-bond tensile strength, parallel-bond cohesion strength, parallel-bond effective modulus, parallel-bond friction angle, and parallel-bond stiffness ratio. These parameters cannot be eas- ily measured in the laboratory or directly related to either measurable or physical material parameters. Hence, a calibration process is required to choose the values to be used in simulations of physical systems. In this study, response surface methodology along with the central composite design approach is used to calibrate BPMs. The sensitivities of the microparameters related to the uniaxial compressive strength (UCS) and elasticity modulus (i.e., the macroscopic responses of the models) are thoroughly scrutinized. Numerical simulations are performed to carefully assess the performance of the model. It is found that the elasticity modulus is highly correlated with the parallel-bond effective modulus. In addition, the parallel- bond tensile and cohesion strengths are the two most significant microparameters with a considerable effect on the UCS. The predicted values determined by the proposed approach are in good agreement with the observed values, which verifies the applicability of the proposed method.