期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Complex solutions and novel complex wave localized excitations for the(2+1)-dimensional Boiti-Leon-Pempinelli system
1
作者 马松华 徐根海 朱海平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期191-194,共4页
With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempi... With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained. 展开更多
关键词 Riccati mapping approach boiti-leon-pempinelli system complex solutions localized excita-tions
下载PDF
Localized Structures on Periodic Background Wave of (2+1)-Dimensional Boiti-Leon-Pempinelli System via an Object Reduction 被引量:1
2
作者 FANG Jian-Ping MA Song-Hua FEI Jin-Xi HONG Bi-Hai ZHENG Chun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第5X期811-814,共4页
In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon... In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of exact solutions is derived from some reduction equations. Based on the derived solutions, the localized structures under the periodic wave background are obtained. 展开更多
关键词 object reduction (2+1)-dimensional boiti-leon-pempinelli system exact solution
下载PDF
On New Similarity Solutions of the Boiti–Leon–Pempinelli System
3
作者 Mukesh Kumar Raj Kumar 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第1期121-126,共6页
In the present work, the new exact solutions of the Boiti-Leon-Pempinelli system have been found. The system has extensive physical background. The exact solutions of the Boiti-Leon-Pempinelli system are investigated ... In the present work, the new exact solutions of the Boiti-Leon-Pempinelli system have been found. The system has extensive physical background. The exact solutions of the Boiti-Leon-Pempinelli system are investigated using similarity transformation method via Lie group theory. Lie symmetry generators are used for constructing similarity variables for the given system of partial differential equations, which lead to the new system of partial differentiaJ equations with one variable less at each step and eventually to a system of ordinary differential equations (ODEs). Finally, these ODEs are solved exactly. The exact solutions are obtained under some parametric restrictions. The elastic behavior of the soliton solutions is shown graphically by taking some appropriate choices of the arbitrary functions involved in the solutions. 展开更多
关键词 boiti-leon-pempinelli system similarity transformation method Lie group theory soliton solutions
原文传递
(2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤子间的相互作用 被引量:43
4
作者 马松华 强继业 方建平 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第2期620-626,共7页
利用改进的变系数的Riccati方程映射法,得到了(2+1)维Boiti-Leon-Pempinelli系统(BLP)的新显式精确解.根据得到的解,研究了BLP系统的混沌行为及孤子间的相互作用.
关键词 改进的映射法 boiti-leon-pempinelli系统 混沌行为 相互作用
原文传递
Boiti-Leon-Pempinelli系统的新变量分离解及其方形孤子和分形孤子 被引量:29
5
作者 方建平 郑春龙 朱加民 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第7期2990-2995,共6页
利用拓展的Riccati方程映射法,得到了(2+1)维Boiti_Leon_Pempinelli系统新的变量分离解.根据得到的分离变量解,构造出该系统新型的孤子结构———方孤子和分形孤子.
关键词 分离解 系统 分形 方形 (2+1)维 分离变量 孤子结构 映射法
原文传递
(2+1)维Boiti-Leon-Pempinelle系统的钟状和峰状圈孤子 被引量:19
6
作者 郑春龙 方建平 陈立群 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第4期1468-1475,共8页
借助于Painlev B cklund变换和多线性变量分离方法 ,求得了 (2 +1)维非线性Boiti Leon Pempinelle系统的一般变量分离解 .根据得到的一般解 ,可以构建出丰富的局域相干结构 ,如峰状孤子、紧致子等 .得到了两种新的局域结构———钟状... 借助于Painlev B cklund变换和多线性变量分离方法 ,求得了 (2 +1)维非线性Boiti Leon Pempinelle系统的一般变量分离解 .根据得到的一般解 ,可以构建出丰富的局域相干结构 ,如峰状孤子、紧致子等 .得到了两种新的局域结构———钟状圈孤子和峰状圈孤子 ,并简要讨论了这两种圈孤子的一些特殊演化性质 . 展开更多
关键词 变量分离法 圈孤子 局域相干结构 非线性物理系统 势函数
原文传递
(2+1)维Boiti-Leon-Pempinelli方程系统的对称约化和精确解 被引量:4
7
作者 费金喜 应颖洁 雷燕 《丽水学院学报》 2014年第5期8-14,共7页
对Boiti-Leon-Pempinelli系统,通过标准的Painlevé截断展开,获得具有延长结构的Lie点对称矢量场的留数局域对称。从已得到的对称得出一些变换不变性,同时也可利用Clarkson-Kruskal的直接方法得到该系统的对称。通过解特征方程得到... 对Boiti-Leon-Pempinelli系统,通过标准的Painlevé截断展开,获得具有延长结构的Lie点对称矢量场的留数局域对称。从已得到的对称得出一些变换不变性,同时也可利用Clarkson-Kruskal的直接方法得到该系统的对称。通过解特征方程得到该系统的双曲正切函数的显式解。 展开更多
关键词 boiti-leon-pempinelli系统 留数对称 对称约化 显式解
下载PDF
(2+1)维Boiti-Leon-Pempinelli方程的椭圆函数周期波解 被引量:2
8
作者 蔡珊珊 周钰谦 刘倩 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期504-507,共4页
利用动力系统和数值模拟的相关理论和方法研究了(2+1)维Boiti-Leon-Pempinelli方程,获得了其不同拓扑结构的相图,这些相图清楚地展示了所有的有界轨道,而这些有界轨道就对应于原系统的有界行波.进一步,通过计算复杂的椭圆积分,获得了系... 利用动力系统和数值模拟的相关理论和方法研究了(2+1)维Boiti-Leon-Pempinelli方程,获得了其不同拓扑结构的相图,这些相图清楚地展示了所有的有界轨道,而这些有界轨道就对应于原系统的有界行波.进一步,通过计算复杂的椭圆积分,获得了系统椭圆函数类型的周期波解. 展开更多
关键词 boiti-leon-pempinelli方程 动力系统 椭圆函数 周期波解 数值模拟
下载PDF
Boiti-Leon-Pempinelli系统的半折迭局域聚合结构 被引量:1
9
作者 马正义 《云南师范大学学报(自然科学版)》 2005年第2期33-36,64,共5页
利用Painlevé B cklund变换和多线性变量分离途经,获得了(2+1) 维 Boiti Leon Pempinelli系统的变量分离解,基于该导出解,构造出了两类具有半折迭局域聚合结构的孤波解。
关键词 (2+1)-一维boiti-leon-pempinelli系统 Painlev6-1~cklund变换 分离变量法 半折迭局域 聚合结构 孤波解
下载PDF
具有符号计算的(2+1)维Boiti-Leon-Pempinelli系统的精确解
10
作者 陈静 《曲靖师范学院学报》 2018年第3期15-18,共4页
采用广义(G'/G)扩张法构造了(2+1)维Boiti-Leon-Pempinelli系统的精确解.得到了具有任意函数的非行波解,包括双曲函数解、三角函数解和有理解.若赋予参数不同的取值,会得到更多的解.结果表明,广义(G'/G)扩张法在符号计算的帮助... 采用广义(G'/G)扩张法构造了(2+1)维Boiti-Leon-Pempinelli系统的精确解.得到了具有任意函数的非行波解,包括双曲函数解、三角函数解和有理解.若赋予参数不同的取值,会得到更多的解.结果表明,广义(G'/G)扩张法在符号计算的帮助下,为求解数学物理中高维非线性偏微分方程提供了一种有效的方法. 展开更多
关键词 (2+1)维boiti-leon-pempinelli系统 广义(G'/G)扩张法 双曲函数解 三角函数解 有理解
下载PDF
New Fractal Localized Structures in Boiti-Leon-Pempinelli System 被引量:1
11
作者 MAZheng-Yi ZHUJia-Min ZHENGChun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第4X期521-523,共3页
A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti-Leon Pe... A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti-Leon Pempinelli system as a concrete example. Starting from an extended homogeneous balance approach, a general solution of the system is derived. From which some special localized excitations with fractal behaviors are obtained by introducing some types of lower-dimensional fractal patterns. 展开更多
关键词 boiti-leon-pempinelli系统 分形 均匀扩展平衡逼近 非线性物理 变量分离函数
下载PDF
(2+1)维Boiti-Leon-Pempinelli方程(BLP)的新显式精确解和混沌行为 被引量:1
12
作者 马松华 《丽水学院学报》 2006年第5期28-32,共5页
利用改进的Riccati方程映射法,得到了(2+1)维Boiti-Leon-Pempinelli方程的新显式精确解。根据得到的解,利用Lorenz系统研究了(2+1)维Boiti-Leon-Pempinelli方程的混沌行为。
关键词 改进的映射法 boitileonpempinelli方程 混沌行为
下载PDF
(2+1)维Boiti-Leon-Pempinelli方程的精确解 被引量:1
13
作者 赵艳丽 《江汉大学学报(自然科学版)》 2013年第1期19-22,共4页
介绍了求解非线性偏微分方程的方法—(G′/G)-展开法。通过使用该方法,并借助Maple得到了(2+1)维Boiti-Leon-Pempinelli(简称BLP)方程的多种新精确解,其中包括双曲函数解、三角函数解和有理函数解等。
关键词 (2+1)维BLP方程 (G′/G)-展开法 扭结孤子解 符号计算
下载PDF
几种广义的函数展开法在构建偏微分方程精确解中的文献综述与应用(G/G2)-展开法、(exp)-展开法构建(2 + 1)维Boiti-Leon-Pempinelli方程精确解
14
作者 吴大山 孙峪怀 杜玲禧 《应用数学进展》 2019年第10期1659-1674,共16页
首先,系统给出(G′/G2)-展开法、F-展开法、(exp)-展开法、改进的Kudryashov方法、直接截断法,构建偏微分方程的精确解的起源与研究现状的文献综述。接下来,采用对比方式给出上述五种广义的函数展开法在构建偏微分方程精确解的步骤。最... 首先,系统给出(G′/G2)-展开法、F-展开法、(exp)-展开法、改进的Kudryashov方法、直接截断法,构建偏微分方程的精确解的起源与研究现状的文献综述。接下来,采用对比方式给出上述五种广义的函数展开法在构建偏微分方程精确解的步骤。最后,通过上述五种广义的函数展开法中的(G′/G2)-展开法、(exp)-展开法构建(2 + 1)维Boiti-Leon-Pempinelli方程的精确解,并使用控制变量法进行数学实验分析了(2 + 1)维Boiti-Leon-Pempinelli方程中三个变量对于精确解的影响。 展开更多
关键词 (G /G2)-展开法 F-展开法 (exp)-展开法 改进的Kudryashov方法 直接截断法 (2 + 1)维boiti-leon-pempinelli方程 精确解 数学实验
下载PDF
Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti-Leon-Manna-Pempinelli Equations 被引量:9
15
作者 M.T. Darvishi M. Najafi +1 位作者 L. Kavitha M. Venkatesh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第12期785-794,共10页
The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper... The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations. 展开更多
关键词 multiple exp-function method boiti-leon-Manna-pempinelli equation exact solution multi-soliton solution
原文传递
Dynamics of Nonlinear Waves in(2+1)-Dimensional Extended Boiti-Leon-Manna-Pempinelli Equation
16
作者 SUN Junxiu WANG Yunhu 《应用数学》 北大核心 2024年第4期1103-1113,共11页
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic... Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton. 展开更多
关键词 Hirota bilinear method N-soliton solutions Breather solutions Lump solutions Interaction solutions (2+1)-dimensional extended boiti-leon-Manna-pempinelli equation
下载PDF
On some new travelling wave structures to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model
17
作者 Kalim U.Tariq Ahmet Bekir Muhammad Zubair 《Journal of Ocean Engineering and Science》 SCIE 2024年第2期99-111,共13页
In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1... In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica. 展开更多
关键词 The(3+1)-dimensional boiti-leon-Manna-pempinelli model The(1/G')-expansion method The Bernoulli sub-ODE method The modified Kudryashov method
原文传递
High-dimensional nonlinear variable separation solutions and novel wave excitations for the(4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
18
作者 Zu-feng Liang Xiao-yan Tang Wei Ding 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第11期1-11,共11页
Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresp... Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresponding lower-dimensional integrable equations.Recently,an integrable(4+1)-dimensional extension of the Boiti-Leon-Manna-Pempinelli(4DBLMP)equation has been proposed,which can also be considered as an extension of the famous Korteweg-de Vries equation that is applicable in fluids,plasma physics and so on.It is shown that new higher-dimensional variable separation solutions with several arbitrary lowerdimensional functions can also be obtained using the multilinear variable separation approach for the 4DBLMP equation.In addition,by taking advantage of the explicit expressions of the new solutions,versatile(4+1)-dimensional nonlinear wave excitations can be designed.As an illustration,periodic breathing lumps,multi-dromion-ring-type instantons,and hybrid waves on a doubly periodic wave background are discovered to reveal abundant nonlinear structures and dynamics in higher dimensions. 展开更多
关键词 (4+1)-dimensional boiti-leon-Manna-pempinelli equation variable separation solution periodic breathing lumps multi-dromion-ring-type instanton hybrid waves on a doubly periodic wave background
原文传递
Wronskian Determinant Solutions for the (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation 被引量:1
19
作者 Hongcai Ma Yongbin Bai 《Journal of Applied Mathematics and Physics》 2013年第5期18-24,共7页
In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using th... In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian technique, which include rational solutions, soliton solutions, positons and negatons. 展开更多
关键词 (3 + 1)-Dimensional boiti-leon-Manna-pempinelli EQUATION The WRONSKIAN Technique Soliton Negaton Positon
下载PDF
Boiti-Leon-Pempinelli方程组的一类孤立波解
20
作者 陆求赐 张宋传 王学彬 《数学的实践与认识》 2021年第22期218-224,共7页
Boiti-Leon-Pempinelli方程组(简写为BLP方程组)是一类重要的非线性演化方程,它可以描述水波在一定深度的无限窄水道中沿x与y两个方向传播时水平速度方向的演化,寻找BLP方程组的精确行波解有着重要的现实意义、自从BLP方程组被提出后,... Boiti-Leon-Pempinelli方程组(简写为BLP方程组)是一类重要的非线性演化方程,它可以描述水波在一定深度的无限窄水道中沿x与y两个方向传播时水平速度方向的演化,寻找BLP方程组的精确行波解有着重要的现实意义、自从BLP方程组被提出后,已经有很多数学工作者从不同角度并使用不同方法来寻求BLP方程组的精确行波解.1/G展开法是近年来发展起来的求解非线性偏微分方程的一种较为有效的方法,利用1/G展开法对BLP方程组进行求解,得到了它的一类孤立波解和扭结波解,同时描绘出解的图像并分析解的结构和变化趋势. 展开更多
关键词 boiti-leon-pempinelli方程组 1/G展开法 行波变换 孤立波解 扭结波解
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部