为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同...为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。展开更多
Inverse heat conduction method (IHCM) is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results. This paper focuses on its application in cryogenic boiling heat t...Inverse heat conduction method (IHCM) is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results. This paper focuses on its application in cryogenic boiling heat transfer. Experiments were conducted on the heat transfer of a stainless steel block in a liquid nitrogen bath, with the assumption of a 1D conduction condition to realize fast acquisition of the temperature of the test points inside the block. With the inverse-heat conduction theory and the explicit finite difference model, a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data. Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient, a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients. The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block. The maximum error with a revised segment fitting is around 6%, which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.展开更多
The conventional straight microchannel heat sinks have been reported to inadequately remove the increasing power density of electronics.In recent years,an effective heat transfer enhancement method,flow disruptions ha...The conventional straight microchannel heat sinks have been reported to inadequately remove the increasing power density of electronics.In recent years,an effective heat transfer enhancement method,flow disruptions have attracted the attention of researchers,where interrupted structures are arranged in the microchannel to enhance flow mixing and heat transfer.However,previous numerical studies of interrupted microchannel heat sinks(I MCHS)mainly focus on single-phase flow condition,and the characteristics of the boiling heat transfer of I MCHS in two-phase flow condition have been rarely explored.Thus,the flow and heat transfer characteristics of two I MCHS based on rectangular microchannel heat sink(R MCHS)are investigated by modeling both single-phase and two-phase flow conditions.These two interrupts consist of a combination of cavities and ribs,namely elliptical cavities and elliptical side ribs(EC-ESR),and elliptical cavities and elliptical central ribs(EC-ECR).The results show that for single-phase flow condition,the maximum Nusselt number is increased by 187%in the EC-ESR design and150%in the EC-ECR design compared with the R MCHS.For subcooled boiling(i.e.,two-phase flow)condition,the EC-ECR design is a promising structure to enhance boiling heat transfer with 6.7 K reduction of average wall temperature and 29%increment of local heat transfer coefficient when compared with those of R MCHS.However,the local heat transfer coefficient in the EC-ESR design is decreased by 22%compared with the R MCHS due to the formation of a rare flow pattern(i.e.,inverted annular flow with vapor film separation)in the microchannel.This flow pattern can induce departure from nucleate boiling(DNB),thereby deteriorating the heat transfer on the channel walls.展开更多
Experimental study was carried out of liquid flow boiling heat transfer with fluidizedsolid particles in a vertical annulus. Water and aqueous solutions of carboxy methyl cellulosewere used as the working fluids. Soli...Experimental study was carried out of liquid flow boiling heat transfer with fluidizedsolid particles in a vertical annulus. Water and aqueous solutions of carboxy methyl cellulosewere used as the working fluids. Solid particles were glass beads of different diameter. Theexperimental results showed that the liquid flow boiling heat transfer was much increasedand the superheat of liquid at heating surface was lowered remarkably by the introductionof the fluidized solid particles. Experimental data were correlated and an empirical equationfor the heat transfer of the three phase flow boiling was obtained.展开更多
文摘为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。
基金supported by the National Natural Sciences Foundation of China (No. 50776075)
文摘Inverse heat conduction method (IHCM) is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results. This paper focuses on its application in cryogenic boiling heat transfer. Experiments were conducted on the heat transfer of a stainless steel block in a liquid nitrogen bath, with the assumption of a 1D conduction condition to realize fast acquisition of the temperature of the test points inside the block. With the inverse-heat conduction theory and the explicit finite difference model, a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data. Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient, a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients. The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block. The maximum error with a revised segment fitting is around 6%, which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.
基金supported by the National MCF Energy R&D Program(Grant No.2018YFE0312300)the National Natural Science Foundation of China(Grant No.51706100)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180477)the Fundamental Research Funds for the Central Universities(Grant No.30918011205)。
文摘The conventional straight microchannel heat sinks have been reported to inadequately remove the increasing power density of electronics.In recent years,an effective heat transfer enhancement method,flow disruptions have attracted the attention of researchers,where interrupted structures are arranged in the microchannel to enhance flow mixing and heat transfer.However,previous numerical studies of interrupted microchannel heat sinks(I MCHS)mainly focus on single-phase flow condition,and the characteristics of the boiling heat transfer of I MCHS in two-phase flow condition have been rarely explored.Thus,the flow and heat transfer characteristics of two I MCHS based on rectangular microchannel heat sink(R MCHS)are investigated by modeling both single-phase and two-phase flow conditions.These two interrupts consist of a combination of cavities and ribs,namely elliptical cavities and elliptical side ribs(EC-ESR),and elliptical cavities and elliptical central ribs(EC-ECR).The results show that for single-phase flow condition,the maximum Nusselt number is increased by 187%in the EC-ESR design and150%in the EC-ECR design compared with the R MCHS.For subcooled boiling(i.e.,two-phase flow)condition,the EC-ECR design is a promising structure to enhance boiling heat transfer with 6.7 K reduction of average wall temperature and 29%increment of local heat transfer coefficient when compared with those of R MCHS.However,the local heat transfer coefficient in the EC-ESR design is decreased by 22%compared with the R MCHS due to the formation of a rare flow pattern(i.e.,inverted annular flow with vapor film separation)in the microchannel.This flow pattern can induce departure from nucleate boiling(DNB),thereby deteriorating the heat transfer on the channel walls.
文摘Experimental study was carried out of liquid flow boiling heat transfer with fluidizedsolid particles in a vertical annulus. Water and aqueous solutions of carboxy methyl cellulosewere used as the working fluids. Solid particles were glass beads of different diameter. Theexperimental results showed that the liquid flow boiling heat transfer was much increasedand the superheat of liquid at heating surface was lowered remarkably by the introductionof the fluidized solid particles. Experimental data were correlated and an empirical equationfor the heat transfer of the three phase flow boiling was obtained.