The degraded parameters recognition is very important for the restoration of blurred images. There are two common types of blurs for most camera systems. One is the defocus blur due to the optical system's defocus...The degraded parameters recognition is very important for the restoration of blurred images. There are two common types of blurs for most camera systems. One is the defocus blur due to the optical system's defocus phenomenon and the other is the motion blur due to the relative movement between the objectives and the camera. Compared with the recognition for the blurred image with only one blur model, the parameter estimation for the picture combining defocus and motion blur models is a more complicated mission. A method was proposed for computer to estimate the parameters of defocus blur and motion blur in cepstrum area simultaneously. According to characters of both blur models in the frequency domain, an adjustment approach was suggested in the frequency area and then convert to the cepstrum field to increase the accuracy of measurement.展开更多
In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on ima...In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on image segmentation. Be- cause of motion blur's convolution process, the pixels of observed image's target and background will be displaced and piled up to produce two superposition regions. As a result, the neighbor- ing pixels in the superposition regions will have similar grey level change. According to the pixel's motion-blur character, the target's blurred edge of superposition region could be detected. Canny operator can be recurred to detect the target edge which parallels the motion blur direction. Then in the segmentation process, the whole target image which has the character of integral convolution between motion blur and real target image can be obtained. At last, the target image is restored by deconvolution algorithms with adding zeros. The restoration result indicates that the approach can effectively solve the kind of problem of space-variant motion blurred image restoration.展开更多
基金The National Natural Science Foundation of China (No 30570485)
文摘The degraded parameters recognition is very important for the restoration of blurred images. There are two common types of blurs for most camera systems. One is the defocus blur due to the optical system's defocus phenomenon and the other is the motion blur due to the relative movement between the objectives and the camera. Compared with the recognition for the blurred image with only one blur model, the parameter estimation for the picture combining defocus and motion blur models is a more complicated mission. A method was proposed for computer to estimate the parameters of defocus blur and motion blur in cepstrum area simultaneously. According to characters of both blur models in the frequency domain, an adjustment approach was suggested in the frequency area and then convert to the cepstrum field to increase the accuracy of measurement.
文摘In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on image segmentation. Be- cause of motion blur's convolution process, the pixels of observed image's target and background will be displaced and piled up to produce two superposition regions. As a result, the neighbor- ing pixels in the superposition regions will have similar grey level change. According to the pixel's motion-blur character, the target's blurred edge of superposition region could be detected. Canny operator can be recurred to detect the target edge which parallels the motion blur direction. Then in the segmentation process, the whole target image which has the character of integral convolution between motion blur and real target image can be obtained. At last, the target image is restored by deconvolution algorithms with adding zeros. The restoration result indicates that the approach can effectively solve the kind of problem of space-variant motion blurred image restoration.