Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear an...With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems.展开更多
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
文摘针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm.
文摘目的针对肝脏肿瘤检测方法对小尺寸肿瘤的检测能力较差和检测网络参数量过大的问题,在改进EfficientDet的基础上,提出用于肝脏肿瘤检测的多尺度自适应融合网络MAEfficientDet-D0(multiscale adaptive fusion network-D0)和MAEfficientDet-D1。方法首先,利用高效倒置瓶颈块替换EfficientDet骨干网络的移动倒置瓶颈块,在保证计算效率的同时,有效解决移动倒置瓶颈块的挤压激励网络维度和参数量较大的问题;其次,在特征融合网络前添加多尺度块,以扩大网络有效感受野,提高体积偏小病灶的检测能力;最后,提出多通路自适应加权特征融合块,以解决低层病灶特征图的语义偏弱和高层病灶特征图的细节感知能力较差的问题,提高了特征的利用率和增强模型对小尺寸肝脏肿瘤的检测能力。结果实验表明,高效倒置瓶颈层在少量增加网络复杂性的同时,可以有效提高网络对模糊图像的检测精度;多通路自适应加权特征融合模块可以有效融合含有上下文信息的深层特征和含有细节信息的浅层特征,进一步提高了模型对病灶特征的表达能力;多尺度自适应融合网络对肝脏肿瘤检测的效果明显优于对比模型。在LiTS(liver tumor segmentation)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP(mean average precision)分别为86.30%和87.39%;在3D-IRCADb(3D image reconstruction for comparison of algorithm database)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP分别为85.62%和86.46%。结论本文提出的MAEfficientDet系列网络提高了特征的利用率和小病灶的检测能力。相比主流检测网络,本文算法具有较好的检测精度和更少的参数量、计算量和运行时间,对肝脏肿瘤检测模型部署于嵌入式设备和移动终端设备具有重要参考价值。
文摘With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems.