Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or co...Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or computer software based on heuristic algorithms will lead to mine schedules that are not the optimal global solution.Mathematical mine planning models have been proved to be very effective in supporting decisions on sequencing the extraction of material in mines.The objective of this paper is to develop a practical optimization framework for caving operations’production scheduling.To overcome the size problem of mathematical programming models and to generate a robust practical near-optimal schedule,a multi-step method for long-term production scheduling of block caving is presented.A mixed-integer linear programming(MILP)formulation is used for each step.The formulations are developed,implemented,and verifed in the TOMLAB/CPLEX environment.The production scheduler aims to maximize the net present value of the mining operation while the mine planner has control over defned constraints.Application and comparison of the models for production scheduling using 298 drawpoints over 15 periods are presented.展开更多
Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and disp...Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.展开更多
Block and panel caving methods are increasingly used for mining of large and strong orebodies at large depths below the ground surface (>1 km). This paper focuses on the production phase of caving when the extracti...Block and panel caving methods are increasingly used for mining of large and strong orebodies at large depths below the ground surface (>1 km). This paper focuses on the production phase of caving when the extraction level is fully developed and subjected to the weight of overlying caved material. A limit equilibrium solution for estimation of cave loads is critically reviewed and combined with existing empirical tools in order to forecast extraction level performance under cave loading. The analysis results, presented in nomogram form, suggest that the risk of severe squeezing of extraction level tunnels does not increase with cave depths below 500-1000 m due to the beneficial effects of arching. Under normal extraction ratios (ER = ~50%), severe squeezing experienced from cave loads in deep mines appears to be unlikely in all but the weakest rock masses (σcm < 5 MPa, where σcm is the rock mass global strength), even with poor draw control or low drawpoint availability. The likelihood of severe squeezing is greater when large draw areas (HR = 50-75 m, where HR is the hydraulic radius) are combined with low drawpoint availability or poor draw control and locally higher extraction ratios (ER = ~75%), even in better quality rock (σcm = 5-10 MPa). The analysis results are back-analyzed with the extraction level performance before and after a doubling production of rate and draw area at the deep ore zone (DOZ) mine in Indonesia. The extraction level conditions predicted by the nomograms correlate well with the experience at the DOZ, in which extraction level damage increases significantly over the production rampup, accompanied by a significant drop in drawpoint availability.展开更多
Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonn...Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonnes of copper and an average grade of 0.34%. The mineralized zone is 2300 m long, 600 - 800 m wide, and 1000 m high in a dome shape. The first-stage mining and processing capacity is 12.5 million tonnes of ore per year. By geotechnical investigation, ore haulage is adopted via a drift and ore pass development system. From mineralogical analysis, a majority of the Pulang copper ore body is classified as a type III rock, which is generally considered to be suitable for block-caving methods. As an update to the traditional mine-to-mill approach, a cave-to-mill integrated production concept is then introduced. This is essentially the integration of underground mine production scheduling and monitoring with surface mineral processing management based on fragment size and geometallurgical ore characteristics. Several unique challenges experienced during the project design and construction, as well as a number of features aimed at mitigating these problems, are also discussed in this paper.展开更多
文摘Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or computer software based on heuristic algorithms will lead to mine schedules that are not the optimal global solution.Mathematical mine planning models have been proved to be very effective in supporting decisions on sequencing the extraction of material in mines.The objective of this paper is to develop a practical optimization framework for caving operations’production scheduling.To overcome the size problem of mathematical programming models and to generate a robust practical near-optimal schedule,a multi-step method for long-term production scheduling of block caving is presented.A mixed-integer linear programming(MILP)formulation is used for each step.The formulations are developed,implemented,and verifed in the TOMLAB/CPLEX environment.The production scheduler aims to maximize the net present value of the mining operation while the mine planner has control over defned constraints.Application and comparison of the models for production scheduling using 298 drawpoints over 15 periods are presented.
基金financially supported by the National Natural Science Foundation of China(No.51374033)the Doctoral Program of Higher Education Research Fund(No.20120006110022)the Chenchao Iron Mine and the technical support of Itasca
文摘Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.
文摘Block and panel caving methods are increasingly used for mining of large and strong orebodies at large depths below the ground surface (>1 km). This paper focuses on the production phase of caving when the extraction level is fully developed and subjected to the weight of overlying caved material. A limit equilibrium solution for estimation of cave loads is critically reviewed and combined with existing empirical tools in order to forecast extraction level performance under cave loading. The analysis results, presented in nomogram form, suggest that the risk of severe squeezing of extraction level tunnels does not increase with cave depths below 500-1000 m due to the beneficial effects of arching. Under normal extraction ratios (ER = ~50%), severe squeezing experienced from cave loads in deep mines appears to be unlikely in all but the weakest rock masses (σcm < 5 MPa, where σcm is the rock mass global strength), even with poor draw control or low drawpoint availability. The likelihood of severe squeezing is greater when large draw areas (HR = 50-75 m, where HR is the hydraulic radius) are combined with low drawpoint availability or poor draw control and locally higher extraction ratios (ER = ~75%), even in better quality rock (σcm = 5-10 MPa). The analysis results are back-analyzed with the extraction level performance before and after a doubling production of rate and draw area at the deep ore zone (DOZ) mine in Indonesia. The extraction level conditions predicted by the nomograms correlate well with the experience at the DOZ, in which extraction level damage increases significantly over the production rampup, accompanied by a significant drop in drawpoint availability.
文摘Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonnes of copper and an average grade of 0.34%. The mineralized zone is 2300 m long, 600 - 800 m wide, and 1000 m high in a dome shape. The first-stage mining and processing capacity is 12.5 million tonnes of ore per year. By geotechnical investigation, ore haulage is adopted via a drift and ore pass development system. From mineralogical analysis, a majority of the Pulang copper ore body is classified as a type III rock, which is generally considered to be suitable for block-caving methods. As an update to the traditional mine-to-mill approach, a cave-to-mill integrated production concept is then introduced. This is essentially the integration of underground mine production scheduling and monitoring with surface mineral processing management based on fragment size and geometallurgical ore characteristics. Several unique challenges experienced during the project design and construction, as well as a number of features aimed at mitigating these problems, are also discussed in this paper.