Similar to the method of continuum mechanics, the variation of the price of index futures is viewed to be continuous and regular. According to the characteristic of index futures, a basic equation of price of index fu...Similar to the method of continuum mechanics, the variation of the price of index futures is viewed to be continuous and regular. According to the characteristic of index futures, a basic equation of price of index futures was established. It is a differential equation, its solution shows that the relation between time and price forms a logarithmic circle. If the time is thought of as the probability of its corresponding price, then such a relation is perfectly coincided with the main assumption of the famous formula of option pricing, based on statistical theory, established by Black and Scholes, winner of 1997 Nobel’ prize on economy. In that formula, the probability of price of basic assets (they stand for index futures here) is assummed to be a logarithmic normal distribution. This agreement shows that the same result may be obtained by two analytic methods with different bases. However, the result, given by assumption by Black_Scholes, is derived from the solution of the differential equation.展开更多
Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermedi...Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermediate dividends, the Black_Scholes model is generalized to the case where the risk_less asset (bond or bank account) earns a time_dependent interest rate and risk asset (stock) has time_dependent the continuously compounding expected rate of return, volatility. In these cases the accurate pricing formula and put_call parity of European option are obtained. The general approach of option pricing is given for the general Black_Scholes of the risk asset (stock) has the continuously compounding expected rate of return, volatility. The accurate pricing formula and put_call parity of European option on a stock whose price process is driven by general Ornstein_Uhlenback (O_U) process are given by actuarial approach.展开更多
Two kinds of mathematical expressions of stock price, one of which based on certain description is the solution of the simplest differential equation (S.D.E.) obtained by method similar to that used in solid mechanics...Two kinds of mathematical expressions of stock price, one of which based on certain description is the solution of the simplest differential equation (S.D.E.) obtained by method similar to that used in solid mechanics,the other based on uncertain description (i.e., the statistic theory)is the assumption of Black_Scholes's model (A.B_S.M.) in which the density function of stock price obeys logarithmic normal distribution, can be shown to be completely the same under certain equivalence relation of coefficients. The range of the solution of S.D.E. has been shown to be suited only for normal cases (no profit, or lost profit news, etc.) of stock market, so the same range is suited for A.B_ S.M. as well.展开更多
文摘Similar to the method of continuum mechanics, the variation of the price of index futures is viewed to be continuous and regular. According to the characteristic of index futures, a basic equation of price of index futures was established. It is a differential equation, its solution shows that the relation between time and price forms a logarithmic circle. If the time is thought of as the probability of its corresponding price, then such a relation is perfectly coincided with the main assumption of the famous formula of option pricing, based on statistical theory, established by Black and Scholes, winner of 1997 Nobel’ prize on economy. In that formula, the probability of price of basic assets (they stand for index futures here) is assummed to be a logarithmic normal distribution. This agreement shows that the same result may be obtained by two analytic methods with different bases. However, the result, given by assumption by Black_Scholes, is derived from the solution of the differential equation.
文摘Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermediate dividends, the Black_Scholes model is generalized to the case where the risk_less asset (bond or bank account) earns a time_dependent interest rate and risk asset (stock) has time_dependent the continuously compounding expected rate of return, volatility. In these cases the accurate pricing formula and put_call parity of European option are obtained. The general approach of option pricing is given for the general Black_Scholes of the risk asset (stock) has the continuously compounding expected rate of return, volatility. The accurate pricing formula and put_call parity of European option on a stock whose price process is driven by general Ornstein_Uhlenback (O_U) process are given by actuarial approach.
文摘Two kinds of mathematical expressions of stock price, one of which based on certain description is the solution of the simplest differential equation (S.D.E.) obtained by method similar to that used in solid mechanics,the other based on uncertain description (i.e., the statistic theory)is the assumption of Black_Scholes's model (A.B_S.M.) in which the density function of stock price obeys logarithmic normal distribution, can be shown to be completely the same under certain equivalence relation of coefficients. The range of the solution of S.D.E. has been shown to be suited only for normal cases (no profit, or lost profit news, etc.) of stock market, so the same range is suited for A.B_ S.M. as well.