期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种新的光谱参量预测黑土养分含量模型 被引量:10
1
作者 张东辉 赵英俊 秦凯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第9期2932-2936,共5页
我国东北黑土富含养分,随着土壤数字制图、精确农业和土壤资源调查等研究的深入,引入航空高光谱数据并提供科学的预测结果成为研究热点。数据源为CASI-1500航空高光谱成像系统,光谱范围380~1 050nm,空间分辨率1.5m。在黑龙江建三江地区... 我国东北黑土富含养分,随着土壤数字制图、精确农业和土壤资源调查等研究的深入,引入航空高光谱数据并提供科学的预测结果成为研究热点。数据源为CASI-1500航空高光谱成像系统,光谱范围380~1 050nm,空间分辨率1.5m。在黑龙江建三江地区采集59个土壤样本,化验获得有机质、全氮、全磷和全钾含量数据,选择eps-regression支持向量机模型,BP神经网络和PLS1最小二乘回归模型,建立光谱与含量的机器学习模型。通过评价3种模型的预测精度,选用支持向量机方法,对航空高光谱数据进行全氮、全磷和全钾的信息提取,采用神经网络方法,反演了有机质信息。研究表明:以光谱统计量、光谱特征值和光谱信息量为大类指标,所选取的18个子指标,能够反映土壤光谱的综合情况,是一种新的土壤光谱数据处理方法。有机质和全钾信息提取精度最高的算法是神经网络法,误差分别为1.21%和0.81%,而支持向量机算法在提取全氮和全磷信息时,验证样本的实测均值和预测均值完全吻合,精度最高。评价航空高光谱提取土壤养分的综合精度,有机质、全氮、全磷和全钾提取误差分别为5.25%,6.05%,2.74%和8.90%,在全磷反演中精度最高。 展开更多
关键词 机器学习 航空高光谱 支持向量机 神经网络 黑土养分
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部