The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a ve...The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.展开更多
Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for wh...Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for what is currently referred to as “dark energy” and the “cosmological constant”.展开更多
The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of ...The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.展开更多
In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are suppo...In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are supported by ideal gas and radiation pressure. In each case, the gas is a polytrope which satisfies the Lane-Emden equation. Solutions are found that yield the physical properties of black holes, for the range 1000 to 100 billion solar masses.展开更多
A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in a completely degenerate quantum state and does not radiate. The pressure and density in t...A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in a completely degenerate quantum state and does not radiate. The pressure and density in the gas are found to be much less than those in the neutron star. The radius of the black hole is far greater than the Schwarzschild radius.展开更多
文摘The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.
文摘Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for what is currently referred to as “dark energy” and the “cosmological constant”.
文摘The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.
文摘In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are supported by ideal gas and radiation pressure. In each case, the gas is a polytrope which satisfies the Lane-Emden equation. Solutions are found that yield the physical properties of black holes, for the range 1000 to 100 billion solar masses.
文摘A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in a completely degenerate quantum state and does not radiate. The pressure and density in the gas are found to be much less than those in the neutron star. The radius of the black hole is far greater than the Schwarzschild radius.