Based on anti-wear theory of soil animals, the samples of impregnated diamond bit with bionic self-regenerated non-smooth surface were designed and fabricated. Such a bionic surface was characterized by concave-shape ...Based on anti-wear theory of soil animals, the samples of impregnated diamond bit with bionic self-regenerated non-smooth surface were designed and fabricated. Such a bionic surface was characterized by concave-shape units of different scales that continuously maintained their shape and function during the whole working process. Abrasion tests were carried out to investigate the performance of samples. Results showed that the bionic samples exhibit excellent wear resistance and drilling performance under the action of bionic self-regenerated units, especially those with units of 2 mm - 3 mm diameter. The par- ticle-trapping mechanism coming from the self-regenerated concaves and the lubricating mechanism coming from the con- tinuously self-supplying of solid lubricant are important reasons for reducing or even avoiding the severe abrasions. The im- proved drilling performance of bionic samples derives from, on the one hand, the back edge of bionic unit that contributes to exposing new diamond and supplying additional shear stresses to increase the cutting ability, on the other hand, the enhanced load per unit area due to the decreased contact area at the frictional interface. The relationship between the wear behavior and the scale of bionic unit was revealed. The unit of smaller scale on the bionic samples can enhance the shear stress level. Further reducing the scale to a contain extent will diminish the wear resistance of sample. While increasing the scale can lead to the poor lubricating effect.展开更多
In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to di...In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to different impact load level and rock types. Therefore the impact experiments of the single PDC cutters with different attack angles in four rocks: black basalt, Missouri red granite, Halston limestone, and a very soft (Roubidoux) sandstone were carried out, and the effects of rake angles of PDC cutters on both the penetration and impact resistance of PDC cutters have been discussed in detail. Test results show that a PDC insert can withstand a very strong impact in compression but is easily damaged by impact shearing, the PDC cutters are more easily damaged by shearing if the attack angles are relatively small, the 45? PDC cutters have the least penetration resistance among the cutters tested. Thus it is suggested that the attack angles of PDC cutters should be larger than 30? for bits which must withstand impact from a hammer.展开更多
文摘Based on anti-wear theory of soil animals, the samples of impregnated diamond bit with bionic self-regenerated non-smooth surface were designed and fabricated. Such a bionic surface was characterized by concave-shape units of different scales that continuously maintained their shape and function during the whole working process. Abrasion tests were carried out to investigate the performance of samples. Results showed that the bionic samples exhibit excellent wear resistance and drilling performance under the action of bionic self-regenerated units, especially those with units of 2 mm - 3 mm diameter. The par- ticle-trapping mechanism coming from the self-regenerated concaves and the lubricating mechanism coming from the con- tinuously self-supplying of solid lubricant are important reasons for reducing or even avoiding the severe abrasions. The im- proved drilling performance of bionic samples derives from, on the one hand, the back edge of bionic unit that contributes to exposing new diamond and supplying additional shear stresses to increase the cutting ability, on the other hand, the enhanced load per unit area due to the decreased contact area at the frictional interface. The relationship between the wear behavior and the scale of bionic unit was revealed. The unit of smaller scale on the bionic samples can enhance the shear stress level. Further reducing the scale to a contain extent will diminish the wear resistance of sample. While increasing the scale can lead to the poor lubricating effect.
文摘In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to different impact load level and rock types. Therefore the impact experiments of the single PDC cutters with different attack angles in four rocks: black basalt, Missouri red granite, Halston limestone, and a very soft (Roubidoux) sandstone were carried out, and the effects of rake angles of PDC cutters on both the penetration and impact resistance of PDC cutters have been discussed in detail. Test results show that a PDC insert can withstand a very strong impact in compression but is easily damaged by impact shearing, the PDC cutters are more easily damaged by shearing if the attack angles are relatively small, the 45? PDC cutters have the least penetration resistance among the cutters tested. Thus it is suggested that the attack angles of PDC cutters should be larger than 30? for bits which must withstand impact from a hammer.