The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water conte...The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.展开更多
The waterborne particles of bisphenol A epoxy resin were prepared by the phaseinversion technique, and the effects of the concentration of the synthetic polymeric emulslfleron the particles size and structure were dis...The waterborne particles of bisphenol A epoxy resin were prepared by the phaseinversion technique, and the effects of the concentration of the synthetic polymeric emulslfleron the particles size and structure were discussed. At lower concentration of the emulsifier,the bigger molecular sieves alike particles were obtained, on the contrary, the smallerparticles with some aggregation were prepared at higher concentration of the emulslfler. Theformation mechanism of different particle sizes and structure at different concentrations of theemulsifier was proposed. presides, the probable model of the aggregation was also brieflypresented.展开更多
Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water req...Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water required at phase inversion point were also discussed.展开更多
文摘The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.
文摘The waterborne particles of bisphenol A epoxy resin were prepared by the phaseinversion technique, and the effects of the concentration of the synthetic polymeric emulslfleron the particles size and structure were discussed. At lower concentration of the emulsifier,the bigger molecular sieves alike particles were obtained, on the contrary, the smallerparticles with some aggregation were prepared at higher concentration of the emulslfler. Theformation mechanism of different particle sizes and structure at different concentrations of theemulsifier was proposed. presides, the probable model of the aggregation was also brieflypresented.
基金This project is supported by the Scientific Fund of Polymer Physics Laboratory,Institute of Chemistry,Chinese Academy of Sciences.
文摘Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water required at phase inversion point were also discussed.