In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is co...In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X).展开更多
In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Th...In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||xo|| such that ||Txo|| 〉 1-6, there exist xε ∈ H and a bounded linear operator S : H → H with ||S|| = 1 = ||xε|| such that ||Sxε||=1, ||x-ε0||≤√2ε+4√2ε, ||S-T||≤√2ε.展开更多
文摘In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X).
基金supported by Natural Science Foundation of China (Grant No. 11071201)supported by Natural Science Foundation of China (Grant No. 11001231)
文摘In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||xo|| such that ||Txo|| 〉 1-6, there exist xε ∈ H and a bounded linear operator S : H → H with ||S|| = 1 = ||xε|| such that ||Sxε||=1, ||x-ε0||≤√2ε+4√2ε, ||S-T||≤√2ε.