Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soi...Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soil enzymes under drought.This study aimed to evaluate the competitive advantage of the IAP Amaranthus spinosus that originated from tropical America compared with the native Chinese species A.tricolor and the activities of soil enzymes under drought.A competitive co-culture of A.spinosus and A.tricolor was established using a planting basin experiment.The two species were treated with different levels of drought,i.e.(i)the control;(ii)a light level of drought and(iii)a heavy level of drought.The functional traits,osmotic adjustment and the activities of antioxidant enzymes of the two species,as well as soil pH and electrical conductivity,contents of soil microbial biomass carbon and the activities of soil enzymes were determined.The relative competition intensity and relative dominance of A.spinosus were greater than those of A.tricolor under drought.Drought may provide an advantage to the competitive advantage of A.spinosus.Soil water-soluble salt content and sucrose hydrolytic power of A.spinosus were greater than those of A.tricolor under drought.The ability of A.spinosus to grow in soil with higher levels of water-soluble salt contents and sucrose hydrolytic power under drought may aid in its acquisition and utilization of nutrients.展开更多
The CAR(Constant Allometric Ratio) and VAR(Variable Allometric Ratio) models wer e two basic biomass models most widely used in research and applications. Re\|sa mpling and sign test were employed in this paper to com...The CAR(Constant Allometric Ratio) and VAR(Variable Allometric Ratio) models wer e two basic biomass models most widely used in research and applications. Re\|sa mpling and sign test were employed in this paper to compare these two models for their parameters' stabilities and their predictions. Research showed that the C AR model would give more stable parameter and more accurate estimation than the VAR model.展开更多
Nitrogen enrichment and land use are known to influence various ecosystems,but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood.Here we investigated ...Nitrogen enrichment and land use are known to influence various ecosystems,but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood.Here we investigated the effects of increased nitrogen input and mowing on the resistance and recovery of temperate semiarid grassland experiencing a three-year drought.Nitrogen addition increased grassland biomass recovery but decreased structural recovery after drought,whereas annual mowing increased grassland biomass recovery and structural recovery but reduced structural resistance to drought.The treatment effects on community biomass/structural resistance and recovery were largely modulated by the stability of the dominant species and asynchronous dynamics among species,and the community biomass resistance and recovery were also greatly driven by the stability of grasses.Community biomass resistance/recovery in response to drought was positively associated with its corresponding structural stability.Our study provides important experimental evidence that both nitrogen addition and mowing could substantially change grassland stability in both functional and structural aspects.Our findings emphasize the need to study changes across levels of ecological organization for a more complete understanding of ecosystem responses to disturbances under widespread environmental changes.展开更多
基金This study was funded by Opening Project of State Key Laboratory of Tree Genetics and Breeding,Northeast Forestry University,China(K2020205)National Natural Science Foundation of China(32071521)+1 种基金Key Research and Development Program of Changzhou,China(CJ20200013)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment.
文摘Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soil enzymes under drought.This study aimed to evaluate the competitive advantage of the IAP Amaranthus spinosus that originated from tropical America compared with the native Chinese species A.tricolor and the activities of soil enzymes under drought.A competitive co-culture of A.spinosus and A.tricolor was established using a planting basin experiment.The two species were treated with different levels of drought,i.e.(i)the control;(ii)a light level of drought and(iii)a heavy level of drought.The functional traits,osmotic adjustment and the activities of antioxidant enzymes of the two species,as well as soil pH and electrical conductivity,contents of soil microbial biomass carbon and the activities of soil enzymes were determined.The relative competition intensity and relative dominance of A.spinosus were greater than those of A.tricolor under drought.Drought may provide an advantage to the competitive advantage of A.spinosus.Soil water-soluble salt content and sucrose hydrolytic power of A.spinosus were greater than those of A.tricolor under drought.The ability of A.spinosus to grow in soil with higher levels of water-soluble salt contents and sucrose hydrolytic power under drought may aid in its acquisition and utilization of nutrients.
文摘The CAR(Constant Allometric Ratio) and VAR(Variable Allometric Ratio) models wer e two basic biomass models most widely used in research and applications. Re\|sa mpling and sign test were employed in this paper to compare these two models for their parameters' stabilities and their predictions. Research showed that the C AR model would give more stable parameter and more accurate estimation than the VAR model.
基金supported by the National Natural Science Foundation of China(32060284,31870441)the Natural Science Foundation of Inner Mongolia,China(2019JQ04)+2 种基金the Central Government Guides the Local Science and Technology Development Foundation(2020ZY0027)the National Science Foundation of the United States(DEB-1856318,CBET-1833988)the Natural Science Foundation of Hebei Province(C2022201042)。
文摘Nitrogen enrichment and land use are known to influence various ecosystems,but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood.Here we investigated the effects of increased nitrogen input and mowing on the resistance and recovery of temperate semiarid grassland experiencing a three-year drought.Nitrogen addition increased grassland biomass recovery but decreased structural recovery after drought,whereas annual mowing increased grassland biomass recovery and structural recovery but reduced structural resistance to drought.The treatment effects on community biomass/structural resistance and recovery were largely modulated by the stability of the dominant species and asynchronous dynamics among species,and the community biomass resistance and recovery were also greatly driven by the stability of grasses.Community biomass resistance/recovery in response to drought was positively associated with its corresponding structural stability.Our study provides important experimental evidence that both nitrogen addition and mowing could substantially change grassland stability in both functional and structural aspects.Our findings emphasize the need to study changes across levels of ecological organization for a more complete understanding of ecosystem responses to disturbances under widespread environmental changes.