In order to enhance the biodecolorization rate and avoid the wash-out problems of redox mediators in continuous systems such as a fluidized bed reactor, polyvinyl alcohol (PVA) beads modified with N- containing func...In order to enhance the biodecolorization rate and avoid the wash-out problems of redox mediators in continuous systems such as a fluidized bed reactor, polyvinyl alcohol (PVA) beads modified with N- containing function groups were investigated and employed as a new sodium anthraquinone-2- sulfonate (AQS) carrier material. Elementary and XPS analyses confirm the existence of AQS on modified PVA bead. The modified PVA beads suit with immobilizing AQS better in adsorption capability and stability. AQS supported on modified PVA beads shows high catalytic activity for biodecolorization of reactive blue 13 in a long process (〉10 runs).展开更多
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effl...Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising altemative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200 mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance.展开更多
基金Supported by the National Natural Science Foundation of China(21276231,21476201,U1462201,and 21376216)
文摘In order to enhance the biodecolorization rate and avoid the wash-out problems of redox mediators in continuous systems such as a fluidized bed reactor, polyvinyl alcohol (PVA) beads modified with N- containing function groups were investigated and employed as a new sodium anthraquinone-2- sulfonate (AQS) carrier material. Elementary and XPS analyses confirm the existence of AQS on modified PVA bead. The modified PVA beads suit with immobilizing AQS better in adsorption capability and stability. AQS supported on modified PVA beads shows high catalytic activity for biodecolorization of reactive blue 13 in a long process (〉10 runs).
基金supported by the National Agency of Scientific and Technological Promotion FONCYT BID 1154the National Scientific and Technical Research Council CONICET,for the scholarshipsResearch Council from the National University of Tucumán,CIUNT PIUNT D-509
文摘Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising altemative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200 mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance.