There are currently 80 types of ecoestrogen proved,which can cause reproductive malfunction,cancer,malformation and abnormal behavior of animals and human beings while some ecoestrogen can interfere with more than one...There are currently 80 types of ecoestrogen proved,which can cause reproductive malfunction,cancer,malformation and abnormal behavior of animals and human beings while some ecoestrogen can interfere with more than one endocrine system or change the sex ratio and life cycle of certain animals.Some trace ecoestrogen can be accumulated to a concentration level hundreds of million times higher than that in the environment.The injury of ecoestrogen could be different according to differences of genetics,time and geology.Compared with synthetic ecoestrogen,phytoestrogen can reduce the risk of reproductive cancers.展开更多
It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from...It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.展开更多
文摘There are currently 80 types of ecoestrogen proved,which can cause reproductive malfunction,cancer,malformation and abnormal behavior of animals and human beings while some ecoestrogen can interfere with more than one endocrine system or change the sex ratio and life cycle of certain animals.Some trace ecoestrogen can be accumulated to a concentration level hundreds of million times higher than that in the environment.The injury of ecoestrogen could be different according to differences of genetics,time and geology.Compared with synthetic ecoestrogen,phytoestrogen can reduce the risk of reproductive cancers.
基金support of the National Natural Science Foundation of China (41271490, 21077131)
文摘It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.