室内合成的聚胺强水化抑制剂SD-A可有效抑制黏土水化分散,与国外同类产品Ultrahib性能相当。聚胺水基钻井液配方为:4%膨润土浆+3%SD-A+0.5%SD-E+1%PAC-LV+0.3%XC+3%SD-506。与聚合醇、阳离子、KCl/聚合物钻井液相比,二级膨润土在聚胺水...室内合成的聚胺强水化抑制剂SD-A可有效抑制黏土水化分散,与国外同类产品Ultrahib性能相当。聚胺水基钻井液配方为:4%膨润土浆+3%SD-A+0.5%SD-E+1%PAC-LV+0.3%XC+3%SD-506。与聚合醇、阳离子、KCl/聚合物钻井液相比,二级膨润土在聚胺水基钻井液中的膨胀率最小,岩屑回收率最高,表明聚胺水基钻井液抑制页岩水化分散能力强。聚胺水基钻井液120℃热滚16 h前后的流变性能稳定,热滚后动塑比为1.07,高于油基钻井液。在400 mL聚胺水基钻井液中分别加入144 g NaCl、8 g CaCl2和80 g劣土后,体系流变性发生不同程度的改变,而滤失量变化较小,其中CaCl2对体系流变性影响最大。结果表明聚胺水基钻井液的抗污染能力较强。屈曲硬度实验、耐崩散实验和黏结实验等新型实验方法表明,聚胺水基钻井液的抑制性接近甚至超过油基钻井液,清洁润滑性优良,其EC值为12 g/L,符合环保要求。另外,简要分析了聚胺水基钻井液的抑制机理。展开更多
Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the en...Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the environment.Metal oxide nanopartides(MONPs),one of the main members of nanomaterials,have been applied in various fields,such as food,medicine,cosmetics,and sensors.This review highlights the bio-toxic effects of widely applied MONPs and their underlying mechanisms.Two main underlying toxicity mechanisms,reactive oxygen species(ROS)-and non-ROS-mediated toxidties,of MONPs have been widely accepted.ROS activates oxidative stress,which leads to lipid peroxidation and cell membrane damage.In addition,ROS can trigger the apoptotic pathway by activating caspase-9 and-3.Non-ROS-mediated toxicity mechanism includes the effect of released ions,excessive accumulation of NPs on the cell surface,and combination of NPs with specific death receptors.Furthermore,the combined toxicity evaluation of some MONPs is also discussed.Toxicity may dramatically change when nanomaterials are used in a combined system because the characteristics of NPs that play a key role in their toxicity such as size,surface properties,and chemical nature in the complex system are different from the pristine NPs.展开更多
文摘室内合成的聚胺强水化抑制剂SD-A可有效抑制黏土水化分散,与国外同类产品Ultrahib性能相当。聚胺水基钻井液配方为:4%膨润土浆+3%SD-A+0.5%SD-E+1%PAC-LV+0.3%XC+3%SD-506。与聚合醇、阳离子、KCl/聚合物钻井液相比,二级膨润土在聚胺水基钻井液中的膨胀率最小,岩屑回收率最高,表明聚胺水基钻井液抑制页岩水化分散能力强。聚胺水基钻井液120℃热滚16 h前后的流变性能稳定,热滚后动塑比为1.07,高于油基钻井液。在400 mL聚胺水基钻井液中分别加入144 g NaCl、8 g CaCl2和80 g劣土后,体系流变性发生不同程度的改变,而滤失量变化较小,其中CaCl2对体系流变性影响最大。结果表明聚胺水基钻井液的抗污染能力较强。屈曲硬度实验、耐崩散实验和黏结实验等新型实验方法表明,聚胺水基钻井液的抑制性接近甚至超过油基钻井液,清洁润滑性优良,其EC值为12 g/L,符合环保要求。另外,简要分析了聚胺水基钻井液的抑制机理。
基金supported by the National Natural Science Foundation of China(21371115,11025526,40830744, 41073073,and 21101104)the National Basic Research Program of China(2011CB933402)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(14YZ025)the Program for Innovative Research Team in University(IRT13078)
文摘Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the environment.Metal oxide nanopartides(MONPs),one of the main members of nanomaterials,have been applied in various fields,such as food,medicine,cosmetics,and sensors.This review highlights the bio-toxic effects of widely applied MONPs and their underlying mechanisms.Two main underlying toxicity mechanisms,reactive oxygen species(ROS)-and non-ROS-mediated toxidties,of MONPs have been widely accepted.ROS activates oxidative stress,which leads to lipid peroxidation and cell membrane damage.In addition,ROS can trigger the apoptotic pathway by activating caspase-9 and-3.Non-ROS-mediated toxicity mechanism includes the effect of released ions,excessive accumulation of NPs on the cell surface,and combination of NPs with specific death receptors.Furthermore,the combined toxicity evaluation of some MONPs is also discussed.Toxicity may dramatically change when nanomaterials are used in a combined system because the characteristics of NPs that play a key role in their toxicity such as size,surface properties,and chemical nature in the complex system are different from the pristine NPs.