The conversion of lignocellulosic biomass into biofuels or biochemicals typically involves a pretreatment process followed by the enzyme-catalyzed hydrolysis of cellulose and hemicellulose components to fermentable su...The conversion of lignocellulosic biomass into biofuels or biochemicals typically involves a pretreatment process followed by the enzyme-catalyzed hydrolysis of cellulose and hemicellulose components to fermentable sugars.Many factors can contribute to the recalcitrance of biomass,e.g.,the lignin content and structure,crystallinity of cellulose,degree of fiber polymerization,and hemicellulose content,among others.However,nonproductive binding between cellulase and lignin is the factor with the greatest impact on enzymatic hydrolysis.To reduce the nonproductive adsorption of enzymes on lignin and improve the efficiency of enzymatic hydrolysis,this review comprehensively summarized the progress that has been made in understanding the interactions between lignin and enzymes.Firstly,the effects of pretreatment techniques on lignin content and enzymatic hydrolysis were reviewed.The effects of lignin content and functional groups on enzymatic hydrolysis were then summarized.Methods for the preparation and characterization of lignin films were assessed.Finally,the methods applied to characterize the interactions between lignin and cellulase were reviewed,and methods for decreasing the nonproductive binding of enzymes to lignin were discussed.This review provides an overview of the current understanding of how lignin hinders the enzymatic hydrolysis of lignocellulosic biomass,and provides a theoretical basis for the development of more economical and effective methods and additives to reduce the interaction of lignin and enzymes to improve the efficiency of enzymatic hydrolysis.展开更多
The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra cent...The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra centrifugation method was used to investigate the binding of filamin to both phosphorylated and unphosphorylated myosins. Mg ATPase activities of both phosphorylated and unphosphorylated myosins in the presence and absence of actin were measured to observe the effects resulted from filamin actin and filamin myosin interactions. Results. It was found that filamin is also a myosin binding protein. Filamin inhibited the actin activated Mg ATPase activity of phosphorylated myosin and stimulated Mg ATPase of phosphorylated myosin in the absence of actin; in addition, filamin stimulated Mg ATPase activity of unphosphorylated myosin in both the presence or absence of actin. Conclusion. The results suggest that the effects of filamin on the myosin Mg ATPase activities are bi directional, i.e., stimulatory via binding to myosin and inhibitory via binding to actin.展开更多
A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with ...A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.展开更多
An electrochemical quantitative method of protein is developed based on the interaction between bromocresol purple(BP) and proteins. In pH 4.5 Britton-Robinson(B-R) buffer solution,BP has a sensitive reductive peak at...An electrochemical quantitative method of protein is developed based on the interaction between bromocresol purple(BP) and proteins. In pH 4.5 Britton-Robinson(B-R) buffer solution,BP has a sensitive reductive peak at -0.518 V( vs. SCE) on the hanging mercury drop electrode. After adding human serum albumin(HSA) to the above solution,the reduction peak current of BP decreased apparently without the shift of the peak potential. The decrease of the reductive peak current of BP is proportional to HSA concentration in the range of 1.0—20.0 mg/L and 20.0—200.0 mg/L with the regression equation Δ I ″ p=90.87+150.53 c(r =0.997) and Δ I ″ p=3 063.70+9.05 c(r =0.992),respectively. The binding ratio of HSA with BP is 1∶2 and the binding constant β s=1.32×10 9. The proposed method was applied to determine the content of HSA in blood samples and the results are in accordance with the traditional Coomassie Brilliant Blue G-250 spectrophotometric assay. This method was further applied to the determination of bovine serum albumin,bovine hemoglobin,egg albumin etc. with satisfactory results.展开更多
Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand...Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand interactions are represented in the form of single chain-based tertiary structures,which may be inappropriate as many interactions involve multiple protein chains(known as quaternary structures).We sought to address these issues,resulting in Q-BioLiP,a comprehensive resource for quaternary structure-based protein-ligand interactions.The major features of Q-BioLiP include:(1)representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures;(2)pairing DNA/RNA chains properly rather than separation;(3)providing both experimental and predicted binding affinities;(4)retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands’biological relevance;and(5)developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure.With these new features,Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions,including protein-small molecule interaction,protein-metal ion interaction,protein-peptide interaction,protein-protein interaction,protein-DNA/RNA interaction,and RNA-small molecule interaction.Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.展开更多
Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,...Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting withABA-DEFICIENT2(ABA2),a key ABA biosynthesis enzyme,to negatively modulate plant responseto abiotic stress tested in Arabidopsis thaliana.Loss of DGK5 function rendered plants less damaged,whereas overexpression(OE)of DGK5 enhanced plant damage to water and salt stress.The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol,whereas DGK5-OE plants displayed the opposite effect.Interestingly,we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity.Consistently,the dgk5 mutant plants exhibited increased levels of ABA,while DGK5-OE plants showed reduced ABA levels.In addition,we showed that both DGK5 and ABA2 are detected in and outside the nuclei,and loss of DGK5 function decreased the nuclear association of ABA2.We found that both DGK5 activity and PA promote nuclear association of ABA2.Taken together,these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration,thereby sup-pressing ABA production in response to abiotic stress.Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.展开更多
High-voltage organic solar cells(OSCs)have received increasing attention because of their promising applications in tandem devices and indoor photovoltaics,but the trade-off between energy loss and charge generation i...High-voltage organic solar cells(OSCs)have received increasing attention because of their promising applications in tandem devices and indoor photovoltaics,but the trade-off between energy loss and charge generation induced by exciton binding energy(E_(b))has become one of the biggest bottlenecks limiting the development of this field.Here,a wide bandgap(WBG)nonfullerene acceptor BTA503 with reduced E_(b) is designed by changing the phenyl side chain on the central core of Cl-BTA5 to an alkyl chain.The diverseπ-πinteractions and enhanced molecular stacking of BTA503 are responsible for its reduced E_(b).Furthermore,both the diminished charge recombination and the fast exciton dissociation caused by the small E_(b) favor the generation of more charge carriers for the PTQ10:BTA503 combination.The efficient Forster resonance energy transfer(FRET)and multiple π-π stacking patterns provide additional charge transfer and transport pathways.Ultimately,the PTQ10:BTA503-based OSC device achieves a V_(OC)of 1.112 V and a PCE of 12.70%,which is higher than that of PTQ10:Cl-BTA5(PCE=10.92%).Simultaneously,the thick film(~300 nm)binary device of PTQ10:BTA503 achieves a PCE of 10.13% with a V_(OC)of 1.102 V,which is the best result for thick film high-voltage OSCs.More importantly,the ternary device of PTQ10:BTA503:Cl-BTA5(1:0.9:0.1)realizes a champion PCE of 13.12% with a V_(OC)of 1.126 V.Our study demonstrates that it is an effective strategy to reduce E_(b) of A_(2)-A_(1)-D-A_(1)-A_(2) type WBG acceptors by modulating the side chains on D unit,which further favors the corresponding devices to obtain world-record PCE and improves their potential for commercial applications.展开更多
基金financially supported by Innovation Project of Guangxi Graduate Education (YCBZ2019017)Guangxi Natural Science Fund (2018JJA130224)Guangxi Key Laboratory of Clean Pulping and Pollution Control Fund (ZR2018057)
文摘The conversion of lignocellulosic biomass into biofuels or biochemicals typically involves a pretreatment process followed by the enzyme-catalyzed hydrolysis of cellulose and hemicellulose components to fermentable sugars.Many factors can contribute to the recalcitrance of biomass,e.g.,the lignin content and structure,crystallinity of cellulose,degree of fiber polymerization,and hemicellulose content,among others.However,nonproductive binding between cellulase and lignin is the factor with the greatest impact on enzymatic hydrolysis.To reduce the nonproductive adsorption of enzymes on lignin and improve the efficiency of enzymatic hydrolysis,this review comprehensively summarized the progress that has been made in understanding the interactions between lignin and enzymes.Firstly,the effects of pretreatment techniques on lignin content and enzymatic hydrolysis were reviewed.The effects of lignin content and functional groups on enzymatic hydrolysis were then summarized.Methods for the preparation and characterization of lignin films were assessed.Finally,the methods applied to characterize the interactions between lignin and cellulase were reviewed,and methods for decreasing the nonproductive binding of enzymes to lignin were discussed.This review provides an overview of the current understanding of how lignin hinders the enzymatic hydrolysis of lignocellulosic biomass,and provides a theoretical basis for the development of more economical and effective methods and additives to reduce the interaction of lignin and enzymes to improve the efficiency of enzymatic hydrolysis.
文摘The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra centrifugation method was used to investigate the binding of filamin to both phosphorylated and unphosphorylated myosins. Mg ATPase activities of both phosphorylated and unphosphorylated myosins in the presence and absence of actin were measured to observe the effects resulted from filamin actin and filamin myosin interactions. Results. It was found that filamin is also a myosin binding protein. Filamin inhibited the actin activated Mg ATPase activity of phosphorylated myosin and stimulated Mg ATPase of phosphorylated myosin in the absence of actin; in addition, filamin stimulated Mg ATPase activity of unphosphorylated myosin in both the presence or absence of actin. Conclusion. The results suggest that the effects of filamin on the myosin Mg ATPase activities are bi directional, i.e., stimulatory via binding to myosin and inhibitory via binding to actin.
基金receiving a fellowship from UGCNew Delhi[University Grant Commission,the XIth plan(Faculty Improvement Programme)]DST and UGC for providing funds to the department under FIST and SAP programme
文摘A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.
文摘An electrochemical quantitative method of protein is developed based on the interaction between bromocresol purple(BP) and proteins. In pH 4.5 Britton-Robinson(B-R) buffer solution,BP has a sensitive reductive peak at -0.518 V( vs. SCE) on the hanging mercury drop electrode. After adding human serum albumin(HSA) to the above solution,the reduction peak current of BP decreased apparently without the shift of the peak potential. The decrease of the reductive peak current of BP is proportional to HSA concentration in the range of 1.0—20.0 mg/L and 20.0—200.0 mg/L with the regression equation Δ I ″ p=90.87+150.53 c(r =0.997) and Δ I ″ p=3 063.70+9.05 c(r =0.992),respectively. The binding ratio of HSA with BP is 1∶2 and the binding constant β s=1.32×10 9. The proposed method was applied to determine the content of HSA in blood samples and the results are in accordance with the traditional Coomassie Brilliant Blue G-250 spectrophotometric assay. This method was further applied to the determination of bovine serum albumin,bovine hemoglobin,egg albumin etc. with satisfactory results.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.T2225007 and T2222012)the Foundation for Innovative Research Groups of State Key Laboratory of Microbial Technology,China(Grant No.WZCX2021-03).
文摘Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand interactions are represented in the form of single chain-based tertiary structures,which may be inappropriate as many interactions involve multiple protein chains(known as quaternary structures).We sought to address these issues,resulting in Q-BioLiP,a comprehensive resource for quaternary structure-based protein-ligand interactions.The major features of Q-BioLiP include:(1)representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures;(2)pairing DNA/RNA chains properly rather than separation;(3)providing both experimental and predicted binding affinities;(4)retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands’biological relevance;and(5)developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure.With these new features,Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions,including protein-small molecule interaction,protein-metal ion interaction,protein-peptide interaction,protein-protein interaction,protein-DNA/RNA interaction,and RNA-small molecule interaction.Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.
基金Research reported in this article was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM141374 and the National Science Foundation grants 2222157 and 2302424.
文摘Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting withABA-DEFICIENT2(ABA2),a key ABA biosynthesis enzyme,to negatively modulate plant responseto abiotic stress tested in Arabidopsis thaliana.Loss of DGK5 function rendered plants less damaged,whereas overexpression(OE)of DGK5 enhanced plant damage to water and salt stress.The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol,whereas DGK5-OE plants displayed the opposite effect.Interestingly,we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity.Consistently,the dgk5 mutant plants exhibited increased levels of ABA,while DGK5-OE plants showed reduced ABA levels.In addition,we showed that both DGK5 and ABA2 are detected in and outside the nuclei,and loss of DGK5 function decreased the nuclear association of ABA2.We found that both DGK5 activity and PA promote nuclear association of ABA2.Taken together,these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration,thereby sup-pressing ABA production in response to abiotic stress.Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.
基金supported by the National Natural Science Foundation of China(21875052,51873044)。
文摘High-voltage organic solar cells(OSCs)have received increasing attention because of their promising applications in tandem devices and indoor photovoltaics,but the trade-off between energy loss and charge generation induced by exciton binding energy(E_(b))has become one of the biggest bottlenecks limiting the development of this field.Here,a wide bandgap(WBG)nonfullerene acceptor BTA503 with reduced E_(b) is designed by changing the phenyl side chain on the central core of Cl-BTA5 to an alkyl chain.The diverseπ-πinteractions and enhanced molecular stacking of BTA503 are responsible for its reduced E_(b).Furthermore,both the diminished charge recombination and the fast exciton dissociation caused by the small E_(b) favor the generation of more charge carriers for the PTQ10:BTA503 combination.The efficient Forster resonance energy transfer(FRET)and multiple π-π stacking patterns provide additional charge transfer and transport pathways.Ultimately,the PTQ10:BTA503-based OSC device achieves a V_(OC)of 1.112 V and a PCE of 12.70%,which is higher than that of PTQ10:Cl-BTA5(PCE=10.92%).Simultaneously,the thick film(~300 nm)binary device of PTQ10:BTA503 achieves a PCE of 10.13% with a V_(OC)of 1.102 V,which is the best result for thick film high-voltage OSCs.More importantly,the ternary device of PTQ10:BTA503:Cl-BTA5(1:0.9:0.1)realizes a champion PCE of 13.12% with a V_(OC)of 1.126 V.Our study demonstrates that it is an effective strategy to reduce E_(b) of A_(2)-A_(1)-D-A_(1)-A_(2) type WBG acceptors by modulating the side chains on D unit,which further favors the corresponding devices to obtain world-record PCE and improves their potential for commercial applications.