A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene...A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing, and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.展开更多
This review chronicles the development of the plant binary vectors of Ti plasmid in Agrobacterium tumefaciens during the last 30 years. A binary vector strategy was designed in 1983 to separate the T-DNA region in a s...This review chronicles the development of the plant binary vectors of Ti plasmid in Agrobacterium tumefaciens during the last 30 years. A binary vector strategy was designed in 1983 to separate the T-DNA region in a small plasmid from the virulence genes in avirulent T-DNA-less Ti plasmid. The small plant vectors with the T-DNA region have been simply now called binary Ti vectors. A binary Ti vector consist of a broad host-range replicon for propagation in A. tumeraciens, an antibiotic resistance gene for bacterial selection and the T-DNA region that would be transferred to the plant genome via the bacterial virulence machinery. The T-DNA region delimited by the right and left border sequences contains an antibiotic resistance gene for plant selection, reporter gene, and/or any genes of interest. The ColEI replicon was also added to the plasmid backbone to enhance the propagation in Escherichia coli. A general trend in the binary vector development has been to increase the plasmid stability during a long co-cultivation period of A. tumefaciens with the target host plant tissues. A second trend is to understand the molecular mechanism of broad host-range replication, and to use it to reduce the size of plasmid for ease in cloning and for higher plasmid yield in E. coli. The broad host-range replicon of VS1 was shown to be a choice of replicon over those of pRK2, pRi and pSA because of the superior stability and of small well-defined replicon. Newly developed plant binary vectors pLSU has the small size of plasmid backbone (4566 bp) consisting of VS1 replicon (2654 bp), ColE1 replicon (715 bp), a bacterial kanamycin (999 bp) or tetracycline resistance gene, and the T-DNA region (152 bp).展开更多
The use of traditional breeding for improvement of avocado cultivars is time consuming, hence other methods such as genetic transformation by Agrobacterium is indispensable to adopt. The strain GV3850/pBI121gave best ...The use of traditional breeding for improvement of avocado cultivars is time consuming, hence other methods such as genetic transformation by Agrobacterium is indispensable to adopt. The strain GV3850/pBI121gave best transformation outcome compared to five other binary vectors (AGL1/pCGP904;AGL1/pBI121;GV3850/pCGP904;LBA4404/pCG-P904 and LBA4404/pBI121) under different pH and acetosyringone concentrations. The optimal condition for reliable transformation was by using 200 μM acetosyringone and a pH of 5.2. Transformed embryonic shoots co-cultivated with GV3850/pBI121 were tested using the histochemical x-gluc assay. Further analysis was conducted by polymerase chain reaction using specific primers for the reporter gene (GUS).展开更多
文摘A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing, and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.
文摘This review chronicles the development of the plant binary vectors of Ti plasmid in Agrobacterium tumefaciens during the last 30 years. A binary vector strategy was designed in 1983 to separate the T-DNA region in a small plasmid from the virulence genes in avirulent T-DNA-less Ti plasmid. The small plant vectors with the T-DNA region have been simply now called binary Ti vectors. A binary Ti vector consist of a broad host-range replicon for propagation in A. tumeraciens, an antibiotic resistance gene for bacterial selection and the T-DNA region that would be transferred to the plant genome via the bacterial virulence machinery. The T-DNA region delimited by the right and left border sequences contains an antibiotic resistance gene for plant selection, reporter gene, and/or any genes of interest. The ColEI replicon was also added to the plasmid backbone to enhance the propagation in Escherichia coli. A general trend in the binary vector development has been to increase the plasmid stability during a long co-cultivation period of A. tumefaciens with the target host plant tissues. A second trend is to understand the molecular mechanism of broad host-range replication, and to use it to reduce the size of plasmid for ease in cloning and for higher plasmid yield in E. coli. The broad host-range replicon of VS1 was shown to be a choice of replicon over those of pRK2, pRi and pSA because of the superior stability and of small well-defined replicon. Newly developed plant binary vectors pLSU has the small size of plasmid backbone (4566 bp) consisting of VS1 replicon (2654 bp), ColE1 replicon (715 bp), a bacterial kanamycin (999 bp) or tetracycline resistance gene, and the T-DNA region (152 bp).
文摘The use of traditional breeding for improvement of avocado cultivars is time consuming, hence other methods such as genetic transformation by Agrobacterium is indispensable to adopt. The strain GV3850/pBI121gave best transformation outcome compared to five other binary vectors (AGL1/pCGP904;AGL1/pBI121;GV3850/pCGP904;LBA4404/pCG-P904 and LBA4404/pBI121) under different pH and acetosyringone concentrations. The optimal condition for reliable transformation was by using 200 μM acetosyringone and a pH of 5.2. Transformed embryonic shoots co-cultivated with GV3850/pBI121 were tested using the histochemical x-gluc assay. Further analysis was conducted by polymerase chain reaction using specific primers for the reporter gene (GUS).