NiP/SiOand bimetallic Ni MP/Si O2(M = Co, Fe, Mo, W; Ni/M atomic ratio=5) catalysts were prepared by the temperature-programmed reduction method. The catalysts and their precursors were characterized by means of UV–V...NiP/SiOand bimetallic Ni MP/Si O2(M = Co, Fe, Mo, W; Ni/M atomic ratio=5) catalysts were prepared by the temperature-programmed reduction method. The catalysts and their precursors were characterized by means of UV–Vis DRS, H-TPR, XRD, TEM, CO chemisorption and NH-TPD. Their performance for the deoxygenation of methyl laurate was tested on a fixed-bed reactor. The results show that the main phase was NiP in all catalysts, and M(M = Co, Fe, Mo, W) entered the lattice of NiP forming solid solution. Different from Fe and Co, the introduction of Mo and W into NiP/SiOreduced the phosphide particle size and increased the acid amount. In the deoxygenation reaction, the turnover frequency of methyl laurate increased on the catalysts in the order of NiMoP/SiO, NiP/SiO, Ni WP/Si O2, NiFeP/SiOand NiCoP/SiO, which is influenced by the size of phosphide particles and the interaction between Ni and M(M = Fe, Co, Mo or W). The introduction of the second metal(especially Mo and W) into NiP/SiOpromoted the hydrodeoxygenation pathway. This is mainly attributed to the interaction between Ni and the second metal. Finally, the Ni MoP/SiOcatalyst was tested at 340 oC, 3 MPa, methyl laurate WHSV of 14 h-1and H/methyl laurate molar ratio of 25 for 132 h, and its deactivation took place. We found that the catalyst deactivation mainly resulted from carbonaceous deposit rather than the sintering of metal phosphide crystallites.展开更多
本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应...本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 m A·g^-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%.进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.展开更多
A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP na...A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm^-2 in 1 mol·L^-1 KOH electrolyte. This is much better than the correspond- ing monometal catalysts of CoP/NF@NC and NiP/ NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21176177)the Natural Science Foundation of Tianjin(No.12JCYBJC13200)
文摘NiP/SiOand bimetallic Ni MP/Si O2(M = Co, Fe, Mo, W; Ni/M atomic ratio=5) catalysts were prepared by the temperature-programmed reduction method. The catalysts and their precursors were characterized by means of UV–Vis DRS, H-TPR, XRD, TEM, CO chemisorption and NH-TPD. Their performance for the deoxygenation of methyl laurate was tested on a fixed-bed reactor. The results show that the main phase was NiP in all catalysts, and M(M = Co, Fe, Mo, W) entered the lattice of NiP forming solid solution. Different from Fe and Co, the introduction of Mo and W into NiP/SiOreduced the phosphide particle size and increased the acid amount. In the deoxygenation reaction, the turnover frequency of methyl laurate increased on the catalysts in the order of NiMoP/SiO, NiP/SiO, Ni WP/Si O2, NiFeP/SiOand NiCoP/SiO, which is influenced by the size of phosphide particles and the interaction between Ni and M(M = Fe, Co, Mo or W). The introduction of the second metal(especially Mo and W) into NiP/SiOpromoted the hydrodeoxygenation pathway. This is mainly attributed to the interaction between Ni and the second metal. Finally, the Ni MoP/SiOcatalyst was tested at 340 oC, 3 MPa, methyl laurate WHSV of 14 h-1and H/methyl laurate molar ratio of 25 for 132 h, and its deactivation took place. We found that the catalyst deactivation mainly resulted from carbonaceous deposit rather than the sintering of metal phosphide crystallites.
文摘本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 m A·g^-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%.进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.
文摘A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm^-2 in 1 mol·L^-1 KOH electrolyte. This is much better than the correspond- ing monometal catalysts of CoP/NF@NC and NiP/ NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.