In contrast to most existing works on robust unit commitment(UC),this study proposes a novel big-M-based mixed-integer linear programming(MILP)method to solve security-constrained UC problems considering the allowable...In contrast to most existing works on robust unit commitment(UC),this study proposes a novel big-M-based mixed-integer linear programming(MILP)method to solve security-constrained UC problems considering the allowable wind power output interval and its adjustable conservativeness.The wind power accommodation capability is usually limited by spinning reserve requirements and transmission line capacity in power systems with large-scale wind power integration.Therefore,by employing the big-M method and adding auxiliary 0-1 binary variables to describe the allowable wind power output interval,a bilinear programming problem meeting the security constraints of system operation is presented.Furthermore,an adjustable confidence level was introduced into the proposed robust optimization model to decrease the level of conservatism of the robust solutions.This can establish a trade-off between economy and security.To develop an MILP problem that can be solved by commercial solvers such as CPLEX,the big-M method is utilized again to represent the bilinear formulation as a series of linear inequality constraints and approximately address the nonlinear formulation caused by the adjustable conservativeness.Simulation studies on a modified IEEE 26-generator reliability test system connected to wind farms were performed to confirm the effectiveness and advantages of the proposed method.展开更多
The meteorological big data in Beijing area are typical multi-dimensional big data containing spatiotemporal characteristics,which have important research value for researches related to urban human settlement environ...The meteorological big data in Beijing area are typical multi-dimensional big data containing spatiotemporal characteristics,which have important research value for researches related to urban human settlement environment.With the help of computer programming and software processing,big data crawling,integration,extraction and multi-dimensional information fusion can be realized quickly and effectively,so as to obtain the data set needed for research and realize the target of visualization.Through big data analysis of wind environment,thermal environment and total atmospheric suspended particulate pollutants in Beijing area,it was found that the average wind speed in Beijing area decreased signifi cantly in recent 40 years,while the surface temperature increased signifi cantly;urban heat island effect was signifi cant,and the phenomenon of atmospheric suspended particulate pollution was relatively common.The spatial distribution of the three climatic and environmental data was not balanced and had signifi cant regularity and correlation.Improving urban ventilation corridors and improving urban ventilation capacity is a feasible way to improve urban heat island effect and reduce urban climate issues such as atmospheric particulate pollution.展开更多
基金State Grid Jiangsu Electric Power Co.,Ltd(JF2020001)National Key Technology R&D Program of China(2017YFB0903300)State Grid Corporation of China(521OEF17001C).
文摘In contrast to most existing works on robust unit commitment(UC),this study proposes a novel big-M-based mixed-integer linear programming(MILP)method to solve security-constrained UC problems considering the allowable wind power output interval and its adjustable conservativeness.The wind power accommodation capability is usually limited by spinning reserve requirements and transmission line capacity in power systems with large-scale wind power integration.Therefore,by employing the big-M method and adding auxiliary 0-1 binary variables to describe the allowable wind power output interval,a bilinear programming problem meeting the security constraints of system operation is presented.Furthermore,an adjustable confidence level was introduced into the proposed robust optimization model to decrease the level of conservatism of the robust solutions.This can establish a trade-off between economy and security.To develop an MILP problem that can be solved by commercial solvers such as CPLEX,the big-M method is utilized again to represent the bilinear formulation as a series of linear inequality constraints and approximately address the nonlinear formulation caused by the adjustable conservativeness.Simulation studies on a modified IEEE 26-generator reliability test system connected to wind farms were performed to confirm the effectiveness and advantages of the proposed method.
基金Sponsored by National Natural Science Foundation of China(51708004)YuYou Talent Training Program of North University of Technology(215051360020XN160/009)+1 种基金General Program of Beijing Natural Science Foundation(8202017)2018 Beijing Municipal University Academic Human Resources Development:Youth Talent Support Program(PXM2018-014212-000043).
文摘The meteorological big data in Beijing area are typical multi-dimensional big data containing spatiotemporal characteristics,which have important research value for researches related to urban human settlement environment.With the help of computer programming and software processing,big data crawling,integration,extraction and multi-dimensional information fusion can be realized quickly and effectively,so as to obtain the data set needed for research and realize the target of visualization.Through big data analysis of wind environment,thermal environment and total atmospheric suspended particulate pollutants in Beijing area,it was found that the average wind speed in Beijing area decreased signifi cantly in recent 40 years,while the surface temperature increased signifi cantly;urban heat island effect was signifi cant,and the phenomenon of atmospheric suspended particulate pollution was relatively common.The spatial distribution of the three climatic and environmental data was not balanced and had signifi cant regularity and correlation.Improving urban ventilation corridors and improving urban ventilation capacity is a feasible way to improve urban heat island effect and reduce urban climate issues such as atmospheric particulate pollution.