针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电...针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电路保证均衡电流恒定。通过实验获得电池单体开路电压的滞回特性曲线,并结合充电和放电状态下SOC与开路电压对应关系估计各电池单体SOC,以SOC一致作为均衡目标。实验结果表明,所设计的均衡器均衡电流达到3A,可以满足电池系统均衡需求。展开更多
虚拟时间反转镜(Virtual Time Reversal Mirror,VTRM)引导了空间聚焦和信道均衡,将其应用在Pattern时延差编码(Pattern Time Delay Shift Coding,PDS)水声通信体制,构成VTRM-PDS系统,可增强抗多途干扰的能力。但当通信节点间存在缓慢运...虚拟时间反转镜(Virtual Time Reversal Mirror,VTRM)引导了空间聚焦和信道均衡,将其应用在Pattern时延差编码(Pattern Time Delay Shift Coding,PDS)水声通信体制,构成VTRM-PDS系统,可增强抗多途干扰的能力。但当通信节点间存在缓慢运动,即信道缓慢时变时,在一帧信号中,信道均衡的效果会随时间逐渐降低,产生失配现象。提出了双向均衡方案,在没有信道先验知识的前提下,通过前向和后向信道均衡,充分利用探测信号和信道信息,提高了信道均衡效果。湖试结果证明了该方案的优越性。展开更多
由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初...由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初始剩余电量SOC(State Of Charge),提出了先让高SOC电池放电和先给低SOC电池充电的均衡法.该方法相比传统基于充电电压的均衡法能更精确的反映电池能量状态.实验结果表明,对于要求低能耗的系统采用先让高SOC电池放电均衡至±2%平均SOC界限范围;对于要求均衡结果一致性较高的系统采用先给低SOC电池充电均衡至±1%平均SOC界限范围.该均衡方法有效改善了电池组间的不一致性,对于提高电动汽车锂离子电池的使用寿命和续航里程具有实际意义.展开更多
文摘针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电路保证均衡电流恒定。通过实验获得电池单体开路电压的滞回特性曲线,并结合充电和放电状态下SOC与开路电压对应关系估计各电池单体SOC,以SOC一致作为均衡目标。实验结果表明,所设计的均衡器均衡电流达到3A,可以满足电池系统均衡需求。
文摘虚拟时间反转镜(Virtual Time Reversal Mirror,VTRM)引导了空间聚焦和信道均衡,将其应用在Pattern时延差编码(Pattern Time Delay Shift Coding,PDS)水声通信体制,构成VTRM-PDS系统,可增强抗多途干扰的能力。但当通信节点间存在缓慢运动,即信道缓慢时变时,在一帧信号中,信道均衡的效果会随时间逐渐降低,产生失配现象。提出了双向均衡方案,在没有信道先验知识的前提下,通过前向和后向信道均衡,充分利用探测信号和信道信息,提高了信道均衡效果。湖试结果证明了该方案的优越性。
文摘由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初始剩余电量SOC(State Of Charge),提出了先让高SOC电池放电和先给低SOC电池充电的均衡法.该方法相比传统基于充电电压的均衡法能更精确的反映电池能量状态.实验结果表明,对于要求低能耗的系统采用先让高SOC电池放电均衡至±2%平均SOC界限范围;对于要求均衡结果一致性较高的系统采用先给低SOC电池充电均衡至±1%平均SOC界限范围.该均衡方法有效改善了电池组间的不一致性,对于提高电动汽车锂离子电池的使用寿命和续航里程具有实际意义.